💖💖作者:计算机编程小咖
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
北京气象站数据可视化分析系统介绍
介绍 《基于大数据的北京气象站数据可视化分析系统》是一套采用现代大数据技术栈构建的综合性气象数据处理与分析平台。系统核心采用Hadoop分布式存储框架结合Spark大数据处理引擎,能够高效处理海量北京气象站历史数据,相比传统数据处理方式在性能上实现了质的飞跃。技术架构上,系统提供Python+Django和Java+Spring Boot两套完整的后端解决方案,前端采用Vue框架配合ElementUI组件库和Echarts图表库构建现代化的用户界面,通过HTML、CSS、JavaScript和jQuery技术实现丰富的交互效果。系统功能涵盖完整的用户管理体系,包括用户中心、个人信息管理和密码修改等基础功能,核心业务模块提供专业的大屏可视化展示、天气数据管理、气象时间序列分析、极端气象事件分析、气象空间分布分析以及气象多维综合分析等功能模块。在数据处理层面,系统充分利用Hadoop的HDFS分布式文件系统进行数据存储,通过Spark SQL进行高效的数据查询和处理,结合Pandas和NumPy等Python科学计算库进行深度数据分析,所有分析结果通过MySQL数据库进行持久化存储,最终通过精美的可视化图表向用户展示北京地区的气象变化规律、极端天气事件分布特征以及多维度的气象数据关联分析结果,为气象研究和决策提供有力的数据支撑。
北京气象站数据可视化分析系统演示视频
传统数据处理慢如蜗牛vs Spark实时分析:气象大数据可视化系统性能差距太震撼
北京气象站数据可视化分析系统演示图片
北京气象站数据可视化分析系统代码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
from pyspark.sql.types import *
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views import View
from datetime import datetime, timedelta
import json
spark = SparkSession.builder.appName("WeatherDataAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
class WeatherTimeSeriesAnalysis(View):
def post(self, request):
data = json.loads(request.body)
start_date = data.get('start_date')
end_date = data.get('end_date')
weather_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/weather_db").option("dbtable", "weather_data").option("user", "root").option("password", "password").load()
filtered_df = weather_df.filter((col("record_date") >= start_date) & (col("record_date") <= end_date))
monthly_stats = filtered_df.groupBy(date_format(col("record_date"), "yyyy-MM").alias("month")).agg(avg("temperature").alias("avg_temp"),max("temperature").alias("max_temp"),min("temperature").alias("min_temp"),avg("humidity").alias("avg_humidity"),sum("precipitation").alias("total_precipitation"))
trend_analysis = monthly_stats.withColumn("temp_trend", when(col("avg_temp") > lag("avg_temp").over(Window.orderBy("month")), "上升").when(col("avg_temp") < lag("avg_temp").over(Window.orderBy("month")), "下降").otherwise("稳定"))
seasonal_pattern = filtered_df.withColumn("season", when((month(col("record_date")) >= 3) & (month(col("record_date")) <= 5), "春季").when((month(col("record_date")) >= 6) & (month(col("record_date")) <= 8), "夏季").when((month(col("record_date")) >= 9) & (month(col("record_date")) <= 11), "秋季").otherwise("冬季"))
seasonal_stats = seasonal_pattern.groupBy("season").agg(avg("temperature").alias("season_avg_temp"),avg("humidity").alias("season_avg_humidity"),sum("precipitation").alias("season_total_precip"))
correlation_data = filtered_df.select("temperature", "humidity", "pressure", "precipitation").toPandas()
correlation_matrix = correlation_data.corr().round(3)
result_data = {"monthly_trends": monthly_stats.collect(),"seasonal_patterns": seasonal_stats.collect(),"correlation_analysis": correlation_matrix.to_dict(),"data_summary": {"total_records": filtered_df.count(),"date_range": f"{start_date} 至 {end_date}","analysis_dimensions": ["温度趋势", "湿度变化", "降水分布", "季节特征"]}}
return JsonResponse({"status": "success", "data": result_data})
class ExtremeWeatherAnalysis(View):
def post(self, request):
data = json.loads(request.body)
analysis_year = data.get('year', datetime.now().year)
weather_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/weather_db").option("dbtable", "weather_data").option("user", "root").option("password", "password").load()
yearly_data = weather_df.filter(year(col("record_date")) == analysis_year)
temp_percentiles = yearly_data.select(expr("percentile_approx(temperature, 0.05)").alias("temp_p5"),expr("percentile_approx(temperature, 0.95)").alias("temp_p95"))
temp_thresholds = temp_percentiles.collect()[0]
extreme_hot_days = yearly_data.filter(col("temperature") >= temp_thresholds["temp_p95"])
extreme_cold_days = yearly_data.filter(col("temperature") <= temp_thresholds["temp_p5"])
heavy_rain_days = yearly_data.filter(col("precipitation") >= 25.0)
extreme_weather_summary = yearly_data.withColumn("weather_type", when(col("temperature") >= temp_thresholds["temp_p95"], "极端高温").when(col("temperature") <= temp_thresholds["temp_p5"], "极端低温").when(col("precipitation") >= 25.0, "强降水").otherwise("正常"))
extreme_events = extreme_weather_summary.filter(col("weather_type") != "正常")
monthly_extreme_stats = extreme_events.groupBy(date_format(col("record_date"), "MM").alias("month"), "weather_type").count().orderBy("month")
duration_analysis = extreme_events.withColumn("event_group", row_number().over(Window.partitionBy("weather_type").orderBy("record_date")))
continuous_events = duration_analysis.groupBy("weather_type").agg(max("event_group").alias("total_events"),avg("event_group").alias("avg_duration"))
risk_assessment = yearly_data.withColumn("risk_level", when((col("temperature") >= temp_thresholds["temp_p95"]) | (col("temperature") <= temp_thresholds["temp_p5"]) | (col("precipitation") >= 25.0), "高风险").when((col("temperature") >= temp_thresholds["temp_p95"] - 5) | (col("temperature") <= temp_thresholds["temp_p5"] + 5) | (col("precipitation") >= 10.0), "中风险").otherwise("低风险"))
risk_distribution = risk_assessment.groupBy("risk_level").count()
result_data = {"extreme_hot_days": extreme_hot_days.count(),"extreme_cold_days": extreme_cold_days.count(),"heavy_rain_days": heavy_rain_days.count(),"monthly_distribution": [row.asDict() for row in monthly_extreme_stats.collect()],"risk_assessment": [row.asDict() for row in risk_distribution.collect()],"temperature_thresholds": {"extreme_hot_threshold": float(temp_thresholds["temp_p95"]),"extreme_cold_threshold": float(temp_thresholds["temp_p5"])},"analysis_summary": f"{analysis_year}年北京地区极端天气事件统计分析完成"}
return JsonResponse({"status": "success", "data": result_data})
class WeatherSpatialAnalysis(View):
def post(self, request):
data = json.loads(request.body)
analysis_type = data.get('analysis_type', 'temperature')
time_period = data.get('time_period', '2023')
weather_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/weather_data").option("user", "root").option("password", "password").load()
station_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/weather_db").option("dbtable", "weather_stations").option("user", "root").option("password", "password").load()
joined_data = weather_df.join(station_df, weather_df.station_id == station_df.station_id, "inner")
if time_period.isdigit():
filtered_data = joined_data.filter(year(col("record_date")) == int(time_period))
else:
filtered_data = joined_data.filter(col("record_date") >= time_period)
spatial_stats = filtered_data.groupBy("station_name", "latitude", "longitude", "district").agg(avg(analysis_type).alias(f"avg_{analysis_type}"),max(analysis_type).alias(f"max_{analysis_type}"),min(analysis_type).alias(f"min_{analysis_type}"),count("*").alias("record_count"))
district_summary = spatial_stats.groupBy("district").agg(avg(f"avg_{analysis_type}").alias(f"district_avg_{analysis_type}"),max(f"max_{analysis_type}").alias(f"district_max_{analysis_type}"),min(f"min_{analysis_type}").alias(f"district_min_{analysis_type}"),sum("record_count").alias("total_records"))
hotspot_analysis = spatial_stats.withColumn("hotspot_level", when(col(f"avg_{analysis_type}") >= spatial_stats.select(expr(f"percentile_approx(avg_{analysis_type}, 0.8)")).collect()[0][0], "热点区域").when(col(f"avg_{analysis_type}") <= spatial_stats.select(expr(f"percentile_approx(avg_{analysis_type}, 0.2)")).collect()[0][0], "冷点区域").otherwise("普通区域"))
gradient_analysis = spatial_stats.withColumn("lat_zone", floor((col("latitude") - 39.4) * 10).cast("int")).withColumn("lng_zone", floor((col("longitude") - 116.0) * 10).cast("int"))
zone_stats = gradient_analysis.groupBy("lat_zone", "lng_zone").agg(avg(f"avg_{analysis_type}").alias(f"zone_avg_{analysis_type}"),count("station_name").alias("station_count"))
interpolation_grid = zone_stats.withColumn("interpolated_value", col(f"zone_avg_{analysis_type}") * col("station_count") / sum("station_count").over(Window.partitionBy()))
spatial_correlation = filtered_data.groupBy("district").agg(avg("temperature").alias("avg_temp"),avg("humidity").alias("avg_humidity"),avg("pressure").alias("avg_pressure")).toPandas()
correlation_result = spatial_correlation.corr() if len(spatial_correlation) > 1 else None
result_data = {"station_statistics": [row.asDict() for row in spatial_stats.collect()],"district_summary": [row.asDict() for row in district_summary.collect()],"hotspot_distribution": [row.asDict() for row in hotspot_analysis.collect()],"spatial_correlation": correlation_result.to_dict() if correlation_result is not None else {},"analysis_metadata": {"analysis_type": analysis_type,"time_period": time_period,"total_stations": spatial_stats.count(),"coverage_districts": district_summary.count()}}
return JsonResponse({"status": "success", "data": result_data})
北京气象站数据可视化分析系统文档展示
💖💖作者:计算机编程小咖
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目