前言
💖💖作者:计算机程序员小杨
💙💙个人简介:我是一名计算机相关专业的从业者,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。热爱技术,喜欢钻研新工具和框架,也乐于通过代码解决实际问题,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💕💕文末获取源码联系 计算机程序员小杨
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目
计算机毕业设计选题
💜💜
一.开发工具简介
大数据框架:Hadoop+Spark(本次没用Hive,支持定制)
开发语言:Python+Java(两个版本都支持)
后端框架:Django+Spring Boot(Spring+SpringMVC+Mybatis)(两个版本都支持)
前端:Vue+ElementUI+Echarts+HTML+CSS+JavaScript+jQuery
详细技术点:Hadoop、HDFS、Spark、Spark SQL、Pandas、NumPy
数据库:MySQL
二.系统内容简介
基于大数据的眼科疾病数据分析与可视化分析系统是一个集成了现代大数据技术栈的综合性数据分析平台,专门针对眼科医疗领域的疾病数据进行深度挖掘和智能分析。系统采用Hadoop分布式存储架构作为底层数据支撑,结合Spark大数据计算引擎实现海量眼科疾病数据的高效处理和实时分析,通过HDFS分布式文件系统确保数据存储的可靠性和扩展性。前端采用Vue框架配合ElementUI组件库构建现代化的用户交互界面,集成Echarts图表库实现丰富的数据可视化效果,为医疗数据分析提供直观的图表展示和交互体验。系统核心功能涵盖眼科疾病数据的全生命周期管理,包括数据采集、清洗、存储、分析和可视化展示等环节,支持眼科临床特征分析、患者人口画像构建、预后生存分析、风险因素识别以及治疗模式研究等多维度的医疗数据挖掘任务,为眼科医疗决策提供数据驱动的科学依据和技术支持。
三.系统功能演示
眼科疾病大数据分析毕设推荐:Hadoop+Spark+Vue完整技术栈解析|毕设|计算机毕设|程序开发
四.系统界面展示
五.系统源码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, avg, max, min, when, desc, asc, sum as spark_sum
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType, DateType
import pandas as pd
import numpy as np
from django.http import JsonResponse
from django.views.decorators.csrf import csrf_exempt
import json
spark = SparkSession.builder.appName("EyeDiseaseAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
@csrf_exempt
def clinical_feature_analysis(request):
if request.method == 'POST':
data = json.loads(request.body)
disease_type = data.get('diseaseType', '')
age_range = data.get('ageRange', [0, 100])
gender = data.get('gender', 'all')
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/eye_disease").option("dbtable", "eye_disease_data").option("user", "root").option("password", "password").load()
filtered_df = df.filter(col("age").between(age_range[0], age_range[1]))
if disease_type:
filtered_df = filtered_df.filter(col("disease_type").like(f"%{disease_type}%"))
if gender != 'all':
filtered_df = filtered_df.filter(col("gender") == gender)
age_distribution = filtered_df.groupBy("age_group").agg(count("patient_id").alias("patient_count")).orderBy("age_group")
gender_distribution = filtered_df.groupBy("gender").agg(count("patient_id").alias("patient_count"))
severity_analysis = filtered_df.groupBy("severity_level").agg(count("patient_id").alias("patient_count"), avg("visual_acuity").alias("avg_visual_acuity")).orderBy("severity_level")
symptom_frequency = filtered_df.groupBy("main_symptom").agg(count("patient_id").alias("frequency")).orderBy(desc("frequency"))
treatment_response = filtered_df.filter(col("treatment_result").isNotNull()).groupBy("treatment_method").agg(count("patient_id").alias("total_cases"), spark_sum(when(col("treatment_result") == "effective", 1).otherwise(0)).alias("effective_cases"))
treatment_response = treatment_response.withColumn("effectiveness_rate", (col("effective_cases") / col("total_cases") * 100))
complication_rate = filtered_df.groupBy("has_complications").agg(count("patient_id").alias("case_count"))
total_cases = filtered_df.count()
avg_diagnosis_time = filtered_df.agg(avg("diagnosis_duration_days").alias("avg_days")).collect()[0]["avg_days"]
recurrence_analysis = filtered_df.filter(col("follow_up_months") >= 12).groupBy("recurrence_status").agg(count("patient_id").alias("patient_count"))
risk_factor_correlation = filtered_df.groupBy("risk_factor").agg(count("patient_id").alias("affected_count"), avg("severity_score").alias("avg_severity"))
seasonal_pattern = filtered_df.withColumn("diagnosis_month", col("diagnosis_date").substr(6, 2)).groupBy("diagnosis_month").agg(count("patient_id").alias("monthly_cases")).orderBy("diagnosis_month")
result_data = {"ageDistribution": [row.asDict() for row in age_distribution.collect()], "genderDistribution": [row.asDict() for row in gender_distribution.collect()], "severityAnalysis": [row.asDict() for row in severity_analysis.collect()], "symptomFrequency": [row.asDict() for row in symptom_frequency.limit(10).collect()], "treatmentResponse": [row.asDict() for row in treatment_response.collect()], "complicationRate": [row.asDict() for row in complication_rate.collect()], "totalCases": total_cases, "avgDiagnosisTime": avg_diagnosis_time, "recurrenceAnalysis": [row.asDict() for row in recurrence_analysis.collect()], "riskFactorCorrelation": [row.asDict() for row in risk_factor_correlation.collect()], "seasonalPattern": [row.asDict() for row in seasonal_pattern.collect()]}
return JsonResponse({"status": "success", "data": result_data})
@csrf_exempt
def patient_portrait_analysis(request):
if request.method == 'POST':
data = json.loads(request.body)
patient_id = data.get('patientId', '')
analysis_type = data.get('analysisType', 'comprehensive')
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/eye_disease").option("dbtable", "eye_disease_data").option("user", "root").option("password", "password").load()
patient_df = df.filter(col("patient_id") == patient_id) if patient_id else df
demographic_profile = patient_df.groupBy("age_group", "gender", "occupation").agg(count("patient_id").alias("patient_count")).orderBy(desc("patient_count"))
disease_profile = patient_df.groupBy("primary_disease", "secondary_disease").agg(count("patient_id").alias("case_count"), avg("severity_score").alias("avg_severity")).orderBy(desc("case_count"))
lifestyle_factors = patient_df.groupBy("lifestyle_category").agg(count("patient_id").alias("patient_count"), avg("disease_progression_score").alias("avg_progression"))
medical_history = patient_df.filter(col("medical_history").isNotNull()).groupBy("medical_history_category").agg(count("patient_id").alias("history_count"))
treatment_preference = patient_df.groupBy("preferred_treatment_type").agg(count("patient_id").alias("preference_count"), avg("satisfaction_score").alias("avg_satisfaction")).orderBy(desc("preference_count"))
geographic_distribution = patient_df.groupBy("region", "urban_rural").agg(count("patient_id").alias("patient_count")).orderBy("region")
economic_analysis = patient_df.groupBy("income_level").agg(count("patient_id").alias("patient_count"), avg("treatment_cost").alias("avg_cost")).orderBy("income_level")
behavior_pattern = patient_df.groupBy("compliance_level").agg(count("patient_id").alias("patient_count"), avg("treatment_outcome_score").alias("avg_outcome")).orderBy("compliance_level")
risk_profile = patient_df.select("patient_id", "age", "gender", "family_history_score", "lifestyle_risk_score", "environmental_risk_score").withColumn("total_risk_score", col("family_history_score") + col("lifestyle_risk_score") + col("environmental_risk_score"))
risk_categories = risk_profile.withColumn("risk_category", when(col("total_risk_score") >= 80, "high").when(col("total_risk_score") >= 60, "medium").otherwise("low")).groupBy("risk_category").agg(count("patient_id").alias("category_count"))
follow_up_behavior = patient_df.groupBy("follow_up_compliance").agg(count("patient_id").alias("compliance_count"), avg("health_improvement_score").alias("avg_improvement"))
education_impact = patient_df.groupBy("education_level").agg(count("patient_id").alias("patient_count"), avg("disease_awareness_score").alias("avg_awareness"), avg("self_care_score").alias("avg_self_care"))
comorbidity_pattern = patient_df.filter(col("comorbidities").isNotNull()).groupBy("comorbidity_type").agg(count("patient_id").alias("comorbidity_count"))
result_data = {"demographicProfile": [row.asDict() for row in demographic_profile.collect()], "diseaseProfile": [row.asDict() for row in disease_profile.collect()], "lifestyleFactors": [row.asDict() for row in lifestyle_factors.collect()], "medicalHistory": [row.asDict() for row in medical_history.collect()], "treatmentPreference": [row.asDict() for row in treatment_preference.collect()], "geographicDistribution": [row.asDict() for row in geographic_distribution.collect()], "economicAnalysis": [row.asDict() for row in economic_analysis.collect()], "behaviorPattern": [row.asDict() for row in behavior_pattern.collect()], "riskCategories": [row.asDict() for row in risk_categories.collect()], "followUpBehavior": [row.asDict() for row in follow_up_behavior.collect()], "educationImpact": [row.asDict() for row in education_impact.collect()], "comorbidityPattern": [row.asDict() for row in comorbidity_pattern.collect()]}
return JsonResponse({"status": "success", "data": result_data})
@csrf_exempt
def survival_prognosis_analysis(request):
if request.method == 'POST':
data = json.loads(request.body)
follow_up_period = data.get('followUpPeriod', 60)
disease_stage = data.get('diseaseStage', 'all')
treatment_method = data.get('treatmentMethod', 'all')
df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/eye_disease").option("dbtable", "eye_disease_data").option("user", "root").option("password", "password").load()
survival_df = df.filter(col("follow_up_months") <= follow_up_period)
if disease_stage != 'all':
survival_df = survival_df.filter(col("disease_stage") == disease_stage)
if treatment_method != 'all':
survival_df = survival_df.filter(col("treatment_method") == treatment_method)
survival_rates = survival_df.groupBy("follow_up_interval").agg(count("patient_id").alias("total_patients"), spark_sum(when(col("vision_preserved") == "yes", 1).otherwise(0)).alias("preserved_vision_count")).withColumn("survival_rate", col("preserved_vision_count") / col("total_patients") * 100).orderBy("follow_up_interval")
stage_survival = survival_df.groupBy("disease_stage").agg(count("patient_id").alias("stage_patients"), spark_sum(when(col("vision_preserved") == "yes", 1).otherwise(0)).alias("preserved_count"), avg("visual_acuity_final").alias("avg_final_acuity")).withColumn("stage_survival_rate", col("preserved_count") / col("stage_patients") * 100)
treatment_survival = survival_df.groupBy("treatment_method").agg(count("patient_id").alias("treatment_patients"), spark_sum(when(col("vision_preserved") == "yes", 1).otherwise(0)).alias("treatment_preserved"), avg("treatment_duration_months").alias("avg_treatment_duration")).withColumn("treatment_survival_rate", col("treatment_preserved") / col("treatment_patients") * 100)
age_group_survival = survival_df.groupBy("age_group").agg(count("patient_id").alias("age_patients"), spark_sum(when(col("vision_preserved") == "yes", 1).otherwise(0)).alias("age_preserved")).withColumn("age_survival_rate", col("age_preserved") / col("age_patients") * 100)
complication_impact = survival_df.groupBy("has_complications").agg(count("patient_id").alias("complication_patients"), spark_sum(when(col("vision_preserved") == "yes", 1).otherwise(0)).alias("complication_preserved"), avg("quality_of_life_score").alias("avg_qol_score")).withColumn("complication_survival_rate", col("complication_preserved") / col("complication_patients") * 100)
prognostic_factors = survival_df.select("patient_id", "age", "initial_visual_acuity", "disease_severity_score", "treatment_response_score", "compliance_score").withColumn("prognostic_score", col("initial_visual_acuity") * 0.3 + col("treatment_response_score") * 0.4 + col("compliance_score") * 0.3)
prognosis_categories = prognostic_factors.withColumn("prognosis_category", when(col("prognostic_score") >= 80, "excellent").when(col("prognostic_score") >= 60, "good").when(col("prognostic_score") >= 40, "fair").otherwise("poor")).groupBy("prognosis_category").agg(count("patient_id").alias("category_patients"))
time_to_deterioration = survival_df.filter(col("vision_deteriorated") == "yes").groupBy("deterioration_timeline").agg(count("patient_id").alias("deterioration_count")).orderBy("deterioration_timeline")
risk_stratification = survival_df.withColumn("risk_level", when(col("risk_score") >= 75, "high_risk").when(col("risk_score") >= 50, "moderate_risk").otherwise("low_risk")).groupBy("risk_level").agg(count("patient_id").alias("risk_patients"), avg("months_to_event").alias("avg_months_to_event"))
functional_outcomes = survival_df.groupBy("functional_outcome_category").agg(count("patient_id").alias("outcome_patients"), avg("daily_living_impact_score").alias("avg_impact_score"))
predictive_model_data = survival_df.select("patient_id", "age", "gender", "disease_duration", "treatment_adherence", "vision_preserved").withColumn("survival_probability", when(col("vision_preserved") == "yes", 1.0).otherwise(0.0))
model_performance = predictive_model_data.agg(avg("survival_probability").alias("overall_survival_rate"), count("patient_id").alias("total_analyzed_patients"))
result_data = {"survivalRates": [row.asDict() for row in survival_rates.collect()], "stageSurvival": [row.asDict() for row in stage_survival.collect()], "treatmentSurvival": [row.asDict() for row in treatment_survival.collect()], "ageGroupSurvival": [row.asDict() for row in age_group_survival.collect()], "complicationImpact": [row.asDict() for row in complication_impact.collect()], "prognosisCategories": [row.asDict() for row in prognosis_categories.collect()], "timeToDeterrioration": [row.asDict() for row in time_to_deterioration.collect()], "riskStratification": [row.asDict() for row in risk_stratification.collect()], "functionalOutcomes": [row.asDict() for row in functional_outcomes.collect()], "modelPerformance": model_performance.collect()[0].asDict()}
return JsonResponse({"status": "success", "data": result_data})
六.系统文档展示
结束
💕💕文末获取源码联系 计算机程序员小杨