系统概述
项目背景与目标
本毕业设计系统旨在利用大数据技术和机器学习算法构建一个基于Python的有声读物数据可视化分析平台。随着数字出版产业的快速发展,有声读物市场呈现出爆发式增长态势。根据行业报告显示,2022年全球有声读物市场规模已达到45亿美元,年增长率保持在15%以上。在这一背景下,用户收听行为数据、作品评价数据等海量信息亟待挖掘。本项目将通过构建完整的数据分析流程,为以下三类用户群体提供数据洞察支持:
- 平台运营商:通过数据分析优化运营策略,提升用户留存率和转化率
- 内容创作者:了解用户偏好和市场需求,指导内容创作方向
- 普通用户:获得个性化推荐和内容质量评估参考
系统设计目标包括处理每日千万级数据量,实现毫秒级查询响应,并提供直观易用的可视化界面。
系统架构
系统采用分层架构设计,主要包括以下核心模块:
数据采集层
-
数据来源:
- 通过公开API接口获取喜马拉雅、蜻蜓FM等主流平台数据
- 使用Scrapy框架开发分布式网络爬虫采集补充数据
- 设计定时任务系统,实现每日凌晨自动更新数据
-
采集维度:
- 作品基本信息:包括标题、作者、播音者、时长、分类标签、价格、发布时间等15+字段
- 用户行为数据:涵盖播放量、收藏数、分享次数、收听时长、中断位置等精细指标
- 评价数据:包含1-5星评分、文字评论内容、点赞数等反馈信息
数据处理层
-
数据清洗流程:
- 使用PySpark处理原始JSON/