提示工程架构师实战案例:如何让系统适应100+业务场景
关键词
提示工程架构师, 多场景适配, 业务中台, 提示模板, 动态路由, 场景理解, 提示优化
摘要
在AI大模型时代,企业面临的最大挑战之一是如何让单一系统高效适配多业务场景。本文通过一个实战案例,详细解析了提示工程架构师如何设计和实现能够支持100+业务场景的提示工程架构。我们将从行业痛点出发,深入探讨多场景提示工程的核心挑战,系统阐述"智能提示中枢"架构的设计理念和实现细节,并通过循序渐进的案例展示如何从支持10个场景扩展到100+场景。无论你是AI产品经理、提示工程师还是技术架构师,这篇文章都将为你提供从理论到实践的完整指南,帮助你构建灵活、可扩展且智能的多场景提示工程系统。
1. 背景介绍:多场景AI系统的崛起与挑战
1.1 从单一工具到业务中枢:AI系统的演进之路
2023年被许多业内人士称为"大模型应用元年",这一年,我们见证了AI从实验室走向产业应用的爆发式增长。起初,大多数企业的AI应用还停留在"点状尝试"阶段——为特定业务需求开发单一功能的AI工具,如客服聊天机器人、文档摘要工具或代码生成助手。
然而,随着大模型能力的快速提升和企业对AI价值认知的深化,一种新的趋势逐渐显现:企业不再满足于零散的AI工具,而是开始构建贯穿整个业务流程的AI系统。这些系统不再局限于单一任务,而是需要支撑多个部门、多种业务、甚至跨行业的复杂场景。
案例:某大型电商集团的AI演进之路
让我们以一个真实的企业案例开始。某国内头部电商集团在2023年初启动了AI战略,最初成立了10个独立的AI项目组,分别负责:
- 智能客服系统
- 商品描述生成工具
- 广告文案创作平台
- 用户评论分析系统
- 供应链预测助手
- 财务单据处理工具
- 人力资源智能招聘系统
- 内容审核平台
- 智能推荐引擎
- 内部知识库问答系统
6个月后,集团CTO在一次技术评审会上发现了一个严重问题:这10个系统几乎都基于相似的大模型技术栈,但彼此间完全隔离,存在大量重复建设和资源浪费。更严重的是,随着业务部门提出更多需求,预计在未来一年内需要支持的AI场景将超过100个,如果继续采用这种"烟囱式"开发模式,企业IT架构将面临崩溃。
这个案例并非个例,而是当下企业AI转型中的普遍现象。根据Gartner 2024年AI技术成熟度曲线报告,"多场景AI系统架构"已成为企业AI落地的首要技术挑战,超过60%的中大型企业正在挣扎于如何有效管理日益增长的AI应用场景。
1.2 多场景系统的核心困境:从1到100的跨越
从支持1个场景到支持10个场景,可能只需要简单复制和微调;但从10个场景到100+场景,则需要质的飞跃。这不仅仅是数量的增加,更是复杂度的质变。
场景爆炸的典型挑战:
-
提示管理危机
- 每个场景需要不同的提示词
- 提示词版本混乱,难以追溯
- 相似场景间提示重复,维护成本高
- 提示词冲突和不一致
-
系统适应性瓶颈
- 不同场景对模型能力要求不同
- 业务规则频繁变化导致系统脆弱
- 跨场景数据共享和安全隔离的平衡
- 新场景接入周期长,开发效率低
-
质量控制难题
- 场景间性能差异大,难以统一保障
- 错误难以定位到具体场景或提示
- 用户反馈分散,优化迭代缓慢
- 缺乏统一的质量评估标准
-
资源效率低下
- 重复计算和冗余部署
- 峰值负载处理和资源弹性问题
- 模型选择与场景匹配不优
- 算力成本失控风险
小明是某金融科技公司的AI产品负责人,他的团队在6个月内接到了来自12个业务部门的AI需求。最初,他们为每个需求定制开发提示词和调用逻辑,进展顺利。但当场景增加到20个时,问题开始显现:“我们发现客服部门和贷款审批部门的提示词有冲突,同样的用户查询在不同系统中得到了矛盾的回答。更糟的是,当 regulations更新时,我们需要手动修改15个不同场景的提示词,这个过程花了我们两周时间,还出现了遗漏!”
这正是许多企业正在经历的困境:当场景数量超过一定阈值(通常是20-30个),传统的"一景一策"模式将变得不可持续。
1.3 提示工程架构师:新时代的关键角色
面对多场景AI系统的挑战,一个新的角色应运而生——提示工程架构师(Prompt Engineering Architect)。这一角色不同于传统的提示工程师,后者专注于单个场景的提示词优化;而提示工程架构师则负责设计能够支持数十甚至上百个业务场景的整体提示工程系统架构。
提示工程架构师的核心使命:
设计灵活、可扩展、智能的提示工程架构,使AI系统能够高效适应多样化、快速变化的业务场景,同时保证系统的稳定性、一致性和质量可控。
这一角色需要兼具技术深度和业务广度,既要精通大模型原理和提示工程技术,又要理解复杂业务场景的本质差异,还要具备系统架构设计能力。根据LinkedIn 2024年的职业趋势报告,提示工程架构师已成为AI领域增长最快的新兴职位之一,薪资水平比传统AI工程师高出35%-50%。
提示工程架构师的核心能力模型:
-
技术能力
- 大模型原理与特性掌握
- 提示工程技术与最佳实践
- 系统架构设计能力
- 编程与工程实现能力
- 数据处理与分析技能
-
业务能力
- 跨领域业务理解能力
- 场景抽象与建模能力
- 需求分析与转化能力
- 业务规则提炼能力
-
架构设计能力
- 模块化与组件化思维
- 分层设计与接口定义
- 灵活性与可扩展性平衡
- 性能与成本优化
-
管理能力
- 技术标准制定
- 团队协作与沟通
- 项目规划与执行
- 质量控制与风险管理
李华是国内某大型零售集团的首位提示工程架构师,他分享道:“我的工作不仅仅是写提示词,更像是设计一个’智能翻译官’,让业务需求和AI能力之间能够高效沟通。我需要理解30多个业务部门的独特需求,找出它们的共性和差异,然后设计一套架构,让每个部门都能方便地使用AI,同时保持整体系统的可控性。”
1.4 本文目标与读者收益
本文将通过一个完整的实战案例,详细解析如何从零开始构建支持100+业务场景的提示工程架构。我们将跟随一个虚构企业"智联科技"的提示工程架构师团队,见证他们如何从混乱的多场景管理走向系统化、平台化的解决方案。
通过本文,你将学到:
- 如何识别多场景系统的架构瓶颈
- 提示工程架构的核心设计原则与模式
- 构建支持100+场景的提示工程平台的关键组件
- 从0到1实现多场景提示工程系统的详细步骤
- 实际案例分析:不同行业的多场景适配最佳实践
- 提示工程架构师的实战工具与方法论
无论你是企业AI负责人、系统架构师、提示工程师还是AI产品经理,本文都将为你提供构建下一代多场景AI系统的全面指南。
2. 核心概念解析:构建多场景提示工程架构的基石
2.1 从"点对点"到"总线式":提示工程的架构思维转变
在单一场景或少数场景下,我们通常采用简单直接的"点对点"提示工程模式:业务需求直接映射为提示词,提示词直接调用模型API,返回结果直接呈现给用户。这种模式简单高效,适合快速验证场景价值。
业务需求 → 提示词 → 模型API → 结果输出
然而,当场景数量增长到数十个甚至上百个时,这种模式会导致严重的"蜘蛛网"问题:每个场景都有自己的提示词和调用逻辑,彼此纠缠不清,形成难以维护的系统迷宫。
场景迷宫的代价:
- 开发效率低下:新场景接入需要重复开发相似逻辑
- 维护成本高昂:修改公共逻辑需要触及多个场景
- 质量一致性差:不同场景的提示质量参差不齐
- 系统脆弱性高:一个点的故障可能影响多个场景
提示工程架构师的首要任务是打破这种点对点的紧耦合关系,引入分层和抽象,构建"总线式"或"中枢式"的架构。这就像城市交通系统的发展:从最初的十字路口,到建设主干道,再到构建完整的交通网络。
总线式提示工程架构的核心思想:
- 分离关注点:将提示工程分解为独立的功能模块
- 标准化接口:定义统一的输入输出格式和交互协议
- 集中式管控:核心能力和资源集中管理,分散使用
- 灵活性扩展:支持新场景和新功能的无缝接入
想象一下餐厅的运营模式:单点餐厅(单一场景)可能由厨师直接接单、烹饪和上菜;而大型连锁餐厅(多场景系统)则需要前台、后厨、采购、配送等多个专业化环节的协同。提示工程架构师就像是餐厅的运营总监,设计高效的工作流程和协作机制。
2.2 多场景适配的核心框架:SPIRAL模型
经过对数十个企业多场景AI系统的调研和实践,我们提炼出了一个多场景提示工程架构的核心框架——SPIRAL模型。这一模型定义了构建可扩展、自适应多场景系统的六大核心组件。
SPIRAL模型各组件解析:
-
场景接入层(Scene Access Layer)
- 核心功能:场景识别、请求验证、权限控制、流量管理
- 关键挑战:如何准确快速地识别业务场景,如何处理模糊场景边界
- 类比:智能接待员,负责识别访客身份和需求,引导至相应服务区域
-
提示工程层(Prompt Engineering Layer)
- 核心功能:提示生成、提示优化、提示模板管理、版本控制
- 关键挑战:如何根据场景动态生成高质量提示,如何处理跨场景提示冲突
- 类比:定制化翻译官,将业务需求精确转换为模型能理解的"语言"
-
推理执行层(Inference Execution Layer)
- 核心功能:模型选择、参数配置、调用执行、资源管理
- 关键挑战:如何为不同场景选择最优模型,如何平衡性能与成本
- 类比:专业工匠调度中心,根据任务类型和要求,分配最合适的工匠(模型)
-
结果处理层(Result Processing Layer)
- 核心功能:结果解析、格式转换、业务规则应用、质量检查
- 关键挑战:如何处理模型输出的不确定性,如何确保结果符合业务规范
- 类比:产品精加工车间,将原材料(模型输出)加工为符合标准的产品
-
应用集成层(Application Integration Layer)
- 核心功能:API管理、事件通知、数据同步、前端集成
- 关键挑战:如何适配多样化的应用接入方式,如何保证系统稳定性
- 类比:物流配送网络,负责将最终产品高效准确地送达用户手中
-
分析学习层(Analysis & Learning Layer)
- 核心功能:日志分析、性能监控、用户反馈收集、持续优化
- 关键挑战:如何从海量数据中提取有价值的优化信息,如何实现系统自进化
- 类比:企业战略规划部门,通过分析各环节数据,提出整体优化方案
SPIRAL模型的六大组件形成了一个闭环系统,每个组件专注于特定功能,同时通过标准化接口与其他组件协作。这种分层架构使得系统能够横向扩展(增加更多场景)和纵向深化(提升单个场景质量)。
2.3 场景建模:理解业务场景的本质差异
要构建支持100+场景的系统,首先需要深入理解"场景"的本质。在提示工程架构中,场景不仅仅是业务功能的划分,更是对AI能力需求的抽象描述。
什么是业务场景?
一个业务场景可以定义为:在特定上下文环境中,为实现特定业务目标,AI系统与特定用户角色之间的交互模式。
场景的核心要素包括:
- 用户角色:谁在使用系统?(如普通用户、客服人员、数据分析师)
- 业务目标:希望达成什么结果?(如信息查询、内容生成、决策辅助)
- 上下文环境:使用场景的背景信息?(如电商平台、财务系统、医疗诊断)
- 输入输出:系统接收什么,返回什么?(如文本、表格、图像)
- 约束条件:有哪些限制和要求?(如合规性、准确率、响应速度)
场景分类的维度:
- 按业务领域:电商、金融、医疗、教育等
- 按AI任务类型:问答、生成、分类、提取、推理等
- 按交互模式:单次请求、多轮对话、异步处理、实时响应等
- 按复杂度:简单查询、复杂推理、多步骤任务等
- 按敏感程度:公开信息、内部数据、机密信息等
场景建模的关键工具:场景元数据
为了让系统能够理解和处理不同场景,我们需要将场景信息形式化、结构化,这就是场景元数据(Scene Metadata)。场景元数据是描述场景特征的数据,是连接业务需求与技术实现的桥梁。
// 场景元数据示例:电商产品描述生成场景
{
"scene_id": "ecommerce.product_description.v2",
"name": "电商产品描述生成",
"domain": "ecommerce",
"task_type": "text_generation",
"description": "根据产品属性生成吸引人的电商产品描述",
"user_roles": ["merchant", "content_editor"],
"input_schema": {
"type": "object",
"properties": {
"product_category": {"type": "string", "enum": ["electronics", "clothing", "home", ...]},
"attributes": {"type": "object"},
"target_audience": {"type": "string", "enum": ["general", "professional", "teen", ...]},
"tone": {"type": "string", "enum": ["formal", "casual", "luxury", ...]}
},
"required": ["product_category", "attributes"]
},
"output_schema": {
"type": "object",
"properties": {
"title": {"type": "string"},
"short_description": {"type": "string"},
"detailed_description": {"type": "string"},
"bullet_points": {"type": "array", "items": {"type": "string"}}
}
},
"constraints": {
"max_tokens": 800,
"response_time": 3000,
"sensitive_topics": ["price_comparison", "competitor_mention"],
"compliance_requirements": ["advertising_law", "product_labeling_regulations"]
},
"model_preferences": {
"preferred_models": ["gpt-4", "claude-3"],
"fallback_models": ["gpt-3.5-turbo", "llama-3-70b"],
"min_model_capability": "creative_writing"
},
"prompt_templates": {
"base_template": "tpl.product_description.base",
"category_specific_templates": {
"electronics": "tpl.product_description.electronics",
"clothing": "tpl.product_description.clothing"
}
},
"feedback_config": {
"collect_feedback": true,
"rating_criteria": ["accuracy", "attractiveness", "completeness"],
"auto_improve_triggers": {"low_rating_threshold": 2.5, "sample_size": 10}
}
}
场景元数据不仅描述了场景的输入输出格式,还包含了性能要求、合规约束、模型偏好、提示模板关联等关键信息。这使得系统能够基于元数据自动适配不同场景需求,而无需为每个场景编写定制代码。
场景识别:从显式指定到智能推断
场景识别是多场景系统的入口,决定了后续所有处理流程。有多种场景识别方式:
- 显式指定:请求中直接包含scene_id(简单可靠,适合明确场景)
- 规则匹配:根据请求参数组合匹配预定义规则(适合结构化请求)
- 语义理解:通过NLP理解用户查询意图,映射到场景(适合自然语言输入)
- 历史上下文:基于用户历史交互推断当前场景(适合多轮对话)
- 混合策略:结合多种方法提高识别准确率
在实际系统中,我们通常采用分级场景识别策略:首先尝试显式指定,无法确定时应用规则匹配,最后使用语义理解作为兜底。这种渐进式识别既保证了准确性,又提升了用户体验。
2.4 提示工程模式:从静态模板到动态生成
提示工程是多场景系统的核心引擎,而提示工程架构的设计直接决定了系统的灵活性和扩展性。随着场景数量增加,提示工程也需要从简单的静态模板向动态生成演进。
提示工程的演进路径:
-
静态提示模板
- 为每个场景定义固定的提示模板
- 通过简单变量替换填充模板
- 优点:简单直观,易于理解和调试
- 缺点:难以处理复杂逻辑,模板数量爆炸
-
条件逻辑模板
- 在模板中引入条件判断、循环等控制结构
- 支持更复杂的提示生成逻辑
- 优点:单个模板可覆盖更多变化,减少模板数量
- 缺点:模板复杂度增加,维护难度上升
-
模块化提示组合
- 将提示分解为可复用的模块和组件
- 根据场景需求动态组合模块
- 优点:高度复用,维护性好,易于标准化
- 缺点:需要良好的模块设计,有组合复杂性
-
智能提示生成
- 基于场景元数据和用户请求动态生成提示
- 结合历史数据和反馈优化提示结构
- 优点:高度自适应,支持极端复杂场景
- 缺点:黑盒性增加,调试和解释困难
模块化提示设计:应对100+场景的关键
当场景数量达到100+时,模块化提示设计成为必然选择。通过将提示分解为可复用的模块,我们可以:
- 大幅减少重复工作
- 确保跨场景的一致性
- 加速新场景上线
- 简化维护和更新
模块化提示的核心元素:
- 基础指令模块:定义任务目标和基本要求
- 能力增强模块:注入特定能力的提示片段(如推理能力、创意能力)
- 格式控制模块:规定输出格式和结构
- 领域知识模块:包含特定领域知识的提示片段
- 约束规则模块:定义安全、合规等约束条件
- 示例模块:提供少量示例引导模型行为
模块化提示组合示例:
假设我们需要为不同类型的客户服务查询生成提示:
- 基础指令模块:“你是一个 helpful的客服助手,需要帮助用户解决问题。”
- 能力增强模块:
- 技术支持版:“在回答技术问题时,请提供详细的步骤说明,并使用通俗易懂的语言解释复杂概念。”
- 投诉处理版:“在处理投诉时,请先表达理解和歉意,然后提供具体的解决方案和时间表。”
- 格式控制模块:“请按照以下结构组织回答:1. 确认理解 2. 解决方案 3. 后续步骤”
- 领域知识模块:
- 产品A版:“产品A的主要功能包括…常见问题有…”
- 产品B版:“产品B的主要功能包括…常见问题有…”
- 约束规则模块:“不要提供未经验证的信息,不确定时请建议联系人工客服。”
通过组合不同模块,我们可以快速生成数十种客服场景的提示,而无需为每个场景从头编写提示词。
动态提示优化:超越静态设计
即使采用了模块化设计,固定的模块组合仍难以应对所有变化。动态提示优化通过实时分析请求特征和上下文,对提示进行精细调整,进一步提升效果。
动态提示优化技术包括:
- 提示长度自适应:根据输入复杂度调整提示详细程度
- 指令优先级调整:根据场景重要性调整不同指令的权重
- 示例选择:根据当前请求动态选择最相关的示例
- 思维链生成:根据任务复杂度动态决定是否启用思维链提示
- 多版本提示:对关键场景同时使用多个提示版本,选择最佳结果
动态提示优化使系统能够**“因材施教”**——为每个具体请求定制最合适的提示策略,而不仅仅是为每个场景类别提供固定模板。
2.5 冲突解决与一致性保障:多场景系统的协调机制
在多场景系统中,不同场景可能对同一事物有不同甚至冲突的要求。例如,财务场景要求"严格遵循会计准则",而营销场景则希望"使用吸引人的表述",这两者在描述产品收益时可能产生冲突。
常见的多场景冲突类型:
- 目标冲突:不同场景的AI任务目标相互矛盾
- 风格冲突:不同场景对输出风格有不同要求
- 约束冲突:不同场景的约束条件相互限制
- 知识冲突:不同领域场景的专业知识存在差异
- 优先级冲突:多场景并发时的资源分配矛盾
冲突解决策略:
-
层级优先策略
- 定义全局优先级规则(如:合规 > 安全 > 效率 > 体验)
- 当冲突发生时,高优先级要求覆盖低优先级要求
- 优点:简单明确,易于实现
- 缺点:可能过于僵化,不适应所有情况
-
上下文调解策略
- 引入"调解层"分析冲突,根据具体上下文寻找平衡点
- 例如:在合规前提下,最大化营销效果
- 优点:更灵活,能处理复杂情况
- 缺点:实现复杂,需要领域知识
-
用户偏好策略
- 根据用户明确偏好或历史行为解决冲突
- 例如:同一用户在工作场景偏好正式风格,在个人场景偏好随意风格
- 优点:用户体验个性化
- 缺点:需要收集和管理用户偏好数据
-
动态协商策略
- 对冲突要求进行"谈判",提出折中方案
- 可通过多轮提示工程实现
- 优点:能处理高度复杂的冲突场景
- 缺点:计算成本高,响应时间长
一致性保障机制:
除了解决显式冲突,多场景系统还需要保障跨场景的一致性,特别是在品牌形象、核心价值观和关键业务规则方面。
- 全局规则库:定义所有场景必须遵守的通用规则
- 风格指南:统一品牌语言风格和表达方式
- 术语管理:维护企业级术语表,确保关键概念的统一表述
- 一致性检查:在提示生成和结果返回时验证一致性
- 变更管理:当核心规则变更时,批量更新相关场景
某大型零售企业的提示工程架构师团队发现,尽管不同业务部门有各自的AI需求,但在客户沟通方面需要保持一致的品牌语调。他们建立了一个"品牌语调模块",定义了包括问候方式、感谢用语、问题回应框架等在内的统一规范,所有面向客户的场景都必须集成这个模块。同时,他们开发了一个"语调一致性检查器",自动检测输出是否符合品牌语调要求。实施6个月后,客户满意度提升了18%,品牌认知一致性评分提高了23%。
3. 技术原理与实现:构建支持100+场景的提示工程平台
3.1 架构设计:提示工程平台的整体蓝图
构建支持100+业务场景的提示工程系统,需要一个精心设计的平台架构。这个平台不仅要满足当前需求,还要具备未来扩展能力,能够适应场景持续增长和业务不断变化。
提示工程平台的核心设计原则:
- 模块化与松耦合:各组件独立开发、测试和部署,通过标准接口通信
- 可扩展性:支持水平扩展(增加更多场景)和垂直扩展(提升单个场景能力)
- 灵活性:能够快速适应业务规则变化和新需求
- 可观测性:全面监控平台运行状态和各场景性能
- 鲁棒性:具备容错、降级和恢复机制
- 安全性:严格的权限控制和数据隔离
- 可管理性:提供直观的管理界面和操作工具
提示工程平台的物理架构:
核心服务组件详解:
-
API网关
- 请求路由、负载均衡、协议转换
- 统一入口点,简化客户端集成
- 提供限流、熔断等保护机制
-
场景接入服务
- 场景识别与验证
- 请求参数解析与标准化
- 场景元数据管理
- 请求路由至相应处理流程
-
提示工程服务
- 提示模板管理与渲染
- 模块化提示组合
- 动态提示优化
- 提示版本控制
- 冲突检测与解决
-
模型路由服务
- 基于场景特征选择最优模型
- 模型负载均衡与容错
- 模型调用参数动态配置
- 模型性能监控与切换
-
结果处理服务
- 模型输出解析与验证
- 业务规则应用
- 格式转换与标准化
- 质量检查与修正
-
分析与优化服务
- 全链路日志收集与分析
- 场景性能指标监控
- 用户反馈处理
- 自动优化建议生成
- A/B测试管理
-
知识管理服务
- 领域知识库维护
- 提示模块管理
- 最佳实践沉淀
- 知识更新与同步
3.2 数据模型设计:构建场景与提示的数字孪生
一个强大的数据模型是提示工程平台的基础,它定义了系统如何表示、存储和操作场景、提示及相关实体。良好的数据模型设计能够大幅提升系统的灵活性和可扩展性。
核心数据实体关系:
关键数据模型详解:
- 场景模型(Scene)
{
"id": "scene://ecommerce/product_recommendation",
"name": "电商产品推荐",
"description": "根据用户历史行为和偏好推荐相关产品",
"domain": "ecommerce",
"status": "active",
"owner": "product_team@company.com",
"created_at": "2023-05-15T10:30:00Z",
"updated_at": "2023-11-20T14:25:12Z",
"tags": ["recommendation", "personalization", "ecommerce"],
"related_scenes": ["scene://ecommerce/personalized_email", "scene://ecommerce/homepage_banner"]
}
- 场景版本模型(SceneVersion)
{
"id": "scene_version://ecommerce/product_recommendation/v3.2",
"scene_id": "scene://ecommerce/product_recommendation",
"version": "3.2",
"changelog": "优化了冷启动场景的推荐算法,增加了季节性因素权重",
"created_by": "data_scientist@company.com",
"created_at": "2023-11-20T14:25:12Z",
"is_active": true,
"metadata": {
"input_schema_id": "schema://ecommerce/product_recommendation/input/v2",
"output_schema_id": "schema://ecommerce/product_recommendation/output/v2",
"default_prompt_template_id": "prompt://ecommerce/product_recommendation/base",
"model_preference_id": "model_pref://ecommerce/recommendation",
"quality_thresholds": {
"relevance_score": 0.85,
"diversity_score": 0.70,
"ctr_target": 0.05
}
}
}
- 提示模板模型(PromptTemplate)
{
"id": "prompt://ecommerce/product_recommendation/base",
"name": "产品推荐基础提示模板",
"description": "电商产品推荐场景的基础提示模板",
"type": "composite",
"status": "active",
"created_at": "2023-04-10T09:15:30Z",
"updated_at": "2023-10-05T11:30:45Z",
"owner": "prompt_architect@company.com",
"tags": ["recommendation", "ecommerce", "personalization"],
"structure": {
"modules": [
{"id": "module://base/instruction/recommendation", "required": true},
{"id": "module://capability/enhance/reasoning", "required": false},
{"id": "module://ecommerce/product_knowledge", "required": true},
{"id": "module://format/json", "required": true},
{"id": "module://constraint/safety", "required": true},
{"id": "module://example/ecommerce/recommendation", "required": false}
],
"parameters": [
{"name": "user_history_length", "default": 5, "min": 1, "max": 20},
{"name": "recommendation_count", "default": 8, "min": 3, "max": 15},
{"name": "include_new_products", "default": true},
{"name": "diversity_level", "default": "medium", "enum": ["low", "medium", "high"]}
]
}
}
- 提示模块模型(PromptModule)
{
"id": "module://ecommerce/product_knowledge",
"name": "电商产品知识模块",
"description": "包含电商产品分类和属性知识的提示模块",
"type": "knowledge",
"status": "active",
"version": "2.1",
"content_type": "text/markdown",
"tags": ["ecommerce", "knowledge", "product"],
"parameters": [
{"name": "category_depth", "default": 2, "min": 1, "max": 4},
{"name": "include_specifications", "default": true}
],
"dynamic_content": true,
"data_source": "product_catalog_api",
"refresh_frequency": "daily"
}
- 模型偏好模型(ModelPreference)
{
"id": "model_pref://ecommerce/recommendation",
"name": "电商推荐模型偏好",
"description": "电商产品推荐场景的模型选择策略",
"created_at": "2023-06-12T15:45:22Z",
"updated_at": "2023-11-02T09:18:33Z",
"is_active": true,
"default_strategy": "performance_based",
"fallback_strategy": "cost_effective",
"models": [
{
"model_id": "model://company/gpt-4-1106-preview",
"priority": 1,
"conditions": ["traffic_level == 'high'", "user_segment == 'premium'"],
"parameters": {
"temperature": 0.7,
"max_tokens": 1000,
"top_p": 0.9
}
},
{
"model_id": "model://company/llama-3-70b",
"priority": 2,
"conditions": ["traffic_level == 'medium'", "user_segment != 'premium'"],
"parameters": {
"temperature": 0.6,
"max_tokens": 800,
"top_p": 0.85
}
},
{
"model_id": "model://company/gpt-3.5-turbo",
"priority": 3,
"conditions": ["traffic_level == 'low'", "time_of_day == 'peak'"],
"parameters": {
"temperature": 0.5,
"max_tokens": 600,
"top_p": 0.8
}
}
]
}
这些数据模型共同构成了提示工程平台的"数字骨架",使系统能够精确描述、灵活组合和高效管理场景与提示资源。通过版本化管理和模块化设计,平台能够支持数千个场景和提示变体,同时保持系统的可维护性。
3.3 核心算法与实现:让系统智能适配多场景
多场景提示工程平台的智能性体现在其核心算法中,这些算法使系统能够理解场景需求、优化提示质量、选择合适模型,并持续改进性能。
3.3.1 场景识别与分类算法
场景识别是平台处理请求的第一步,其准确性直接影响后续所有处理流程。对于100+场景的系统,我们需要高效准确的场景识别算法。
分层场景识别算法:
def hierarchical_scene_recognition(request):
"""
分层场景识别算法
步骤:
1. 尝试显式场景指定
2. 应用规则匹配识别
3. 使用机器学习模型进行语义分类
4. 应用场景相似度匹配作为兜底
"""
# 1. 检查请求中是否显式指定场景
if 'scene_id' in request and request['scene_id']:
scene = get_scene_by_id(request['scene_id'])
if scene and scene['status'] == 'active':
log_scene_recognition(method='explicit', confidence=1.0, scene_id=scene['id'])
return scene
# 2. 基于规则匹配识别场景
matched_scenes = rule_based_scene_matching(request)
if matched_scenes and len(matched_scenes) == 1:
log_scene_recognition(method='rule_based', confidence=0.95, scene_id=matched_scenes[0]['id'])
return matched_scenes[0]
# 3. 使用机器学习模型进行语义分类
if 'query' in request or 'text' in request:
text = request.get('query', request.get('text', ''))
if text:
# 提取文本特征
features = extract_text_features(text)
# 获取上下文特征
context_features = extract_context_features(request)
# 组合特征
combined_features = combine_features(features, context_features)
# 模型预测场景概率
scene_probabilities = scene_classification_model.predict(combined_features)
# 获取top 3高概率场景
top_scenes = get_top_scenes_by_probability(scene_probabilities, top_n=3)
# 如果最高概率场景的置信度超过阈值
if top_scenes[0]['probability'] > SCENE_CLASSIFICATION_THRESHOLD:
log_scene_recognition(
method='ml_classification',
confidence=top_scenes[0]['probability'],
scene_id=top_scenes[0]['id']
)
return top_scenes[0]
# 4. 场景相似度匹配作为兜底
similar_scenes = find_similar_scenes(request, top_n=1)
if similar_scenes:
log_scene_recognition(
method='similarity_matching',
confidence=similar_scenes[0]['similarity_score'],
scene_id=similar_scenes[0]['id']
)
return similar_scenes[0]
# 5. 如果所有方法都失败,返回默认场景
default_scene = get_default_scene()
log_scene_recognition(
method='default_fallback',
confidence=0.5,
scene_id=default_scene['id']
)
return default_scene
场景分类模型训练:
场景分类模型是一种文本分类模型,需要使用标注数据进行训练:
def train_scene_classification_model(scene_corpus, validation_data, params):
"""
训练场景分类模型
scene_corpus: 字典,key为场景ID,value为该场景的样本文本列表
validation_data: 验证数据集
params: 训练参数
"""
# 准备训练数据
X, y = [], []
scene_ids = list(scene_corpus.keys())
scene_id_to_label = {scene_id: i for i, scene_id in enumerate(scene_ids)}
for scene_id, texts in scene_corpus.items():
for text in texts:
X.append(text)
y.append(scene_id_to_label[scene_id])
# 文本向量化
vectorizer = TextVectorization(
max_tokens=params.get('max_tokens', 10000),
output_mode=params.get('output_mode', 'tf_idf'),
ngrams=params.get('ngrams', (1, 2))
)
vectorizer.adapt(X)
X_vectorized = vectorizer(X)
# 创建模型
model = Sequential([
Dense(params.get('hidden_dim1', 256), activation='relu', input_shape=(X_vectorized.shape[1],)),
Dropout(params.get('dropout1', 0.3)),
Dense(params.get('hidden_dim2', 128), activation='relu'),
Dropout(params.get('dropout2', 0.2)),
Dense(len(scene_ids), activation='softmax')
])
model.compile(
optimizer=Adam(learning_rate=params.get('learning_rate', 0.001)),
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
# 训练模型
history = model.fit(
X_vectorized, np.array(y),
epochs=params.get('epochs', 20),
batch_size=params.get('batch_size', 32),
validation_split=0.15,
callbacks=[
EarlyStopping(patience=3, restore_best_weights=True),
ModelCheckpoint('scene_classifier_best.h5', save_best_only=True)
]
)
#