AI原生应用开发必看:自然语言生成的5个最佳工程实践
关键词:AI原生应用、自然语言生成、工程实践、Prompt工程、模型微调、评估指标、安全防护
摘要:本文深入探讨了开发高质量自然语言生成(NLG)应用的5个核心工程实践。从Prompt设计技巧到模型微调策略,从评估体系建立到安全防护机制,我们将通过生动的类比和实际代码示例,帮助开发者掌握构建可靠AI应用的关键技术。文章特别强调"以终为始"的开发理念,提供了一套可落地的NLG工程方法论。
背景介绍
目的和范围
本文旨在为AI应用开发者提供一套经过验证的自然语言生成工程实践方案。内容覆盖从需求分析到部署上线的全生命周期,特别聚焦于大语言模型(LLM)在实际业务场景中的应用。
预期读者
- AI应用开发工程师
- 机器学习工程师
- 产品经理和技术决策者
- 对生成式AI感兴趣的技术爱好者
文档结构概述
文章首先介绍核心概念,然后详细解析5个关键实践,每个实践都配有代码示例和应用场景分析,最后讨论未来发展趋势。
术语表
核心术语定义
- AI原生应用:以