实时姿态估计:MediaPipe人体关键点检测实战教程
关键词:实时姿态估计、MediaPipe、人体关键点检测、BlazePose、计算机视觉
摘要:本文将带你从0到1掌握MediaPipe人体关键点检测技术。我们会用“给人体贴标记”的生活比喻解释核心概念,通过Python代码实战演示如何在5分钟内实现实时姿态估计,并结合健身动作分析、AR互动等真实场景,帮你理解这项技术的底层逻辑和应用价值。无论你是刚入门的AI爱好者还是需要快速落地的开发者,都能从这篇教程中找到答案。
背景介绍
目的和范围
你是否好奇过:抖音里的“动态贴纸”是如何精准追踪你的肩膀和手肘?健身APP是怎样判断你做的深蹲是否标准?这些功能的核心技术,就是实时姿态估计。本文将聚焦“人体关键点检测”这一细分领域,通过Google开源的MediaPipe框架,教你用最简单的代码实现实时姿态检测,并理解其背后的技术原理。
预期读者
- 对计算机视觉感兴趣的新手(会基础Python即可)
- 需要快速落地姿态检测功能的开发者(如健身APP、AR应用开发)
- 想了解MediaPipe框架的技术爱好者
文档结构概述
本文将按照“概念解释→原理拆解→代码实战→场景