30天挑战!AI应用架构师的提示工程技能提升计划(每日任务清单)
摘要/引言
你是否曾为以下问题而困扰?
- 明明有强大的AI模型(如GPT-4、Claude、Gemini等)可用,却总是无法得到期望的、高质量的输出?
- 面对复杂的业务需求,不知道如何将其转化为有效的AI提示,让AI成为得力助手而非麻烦制造者?
- 作为AI应用架构师,你深知提示工程(Prompt Engineering)是连接人类意图与AI能力的桥梁,但其精髓难以捉摸?
如果你的答案是肯定的,那么这个“30天AI应用架构师提示工程技能提升挑战”正是为你量身打造!
问题陈述: 在AI驱动产品和服务日益普及的今天,提示工程已从一项“可选技能”演变为AI应用架构师的“核心竞争力”。一个精心设计的提示能够显著提升AI模型的性能、可靠性和安全性,直接影响产品体验和商业价值。然而,系统学习和掌握提示工程并非易事,缺乏结构化的学习路径和实践机会是许多架构师面临的共同痛点。
核心价值: 本30天挑战计划旨在通过每日一个明确的学习主题和实践任务,帮助你从提示工程的基础原理逐步深入到高级策略和架构师特定视角的应用。你将学习如何设计清晰、有效、鲁棒的提示,如何将提示工程融入AI应用的整体架构设计中,并掌握评估、优化和管理提示的方法论。无论你是刚接触提示工程的新手,还是希望进一步提升技能的资深架构师,这个计划都将为你提供系统化的指导和实战经验。
文章概述: 这份挑战计划将分为四个主要阶段:
- 筑基阶段(第1-7天): 夯实基础,理解提示工程的核心概念、原则和基本技巧。
- 进阶阶段(第8-17天): 探索更高级的提示策略和模式,掌握复杂任务的拆解与引导。
- 架构师视角阶段(第18-27天): 聚焦AI应用架构师的特定需求,学习提示工程在系统设计、优化、安全和伦理等方面的应用。
- 整合与展望阶段(第28-30天): 综合运用所学知识进行实战项目,并展望提示工程的未来发展趋势。
每一天,我们都提供明确的学习目标、核心任务(包括理论学习和实践练习)以及反思与总结要点。现在,就让我们踏上这段为期30天的提示工程精进之旅,解锁AI的真正潜力,构建更智能、更可靠的AI应用!
挑战须知
- 目标人群: AI应用架构师、AI产品经理、资深AI开发者,以及所有希望系统提升提示工程技能,并将其应用于实际AI系统设计与开发的技术人员。
- 预备知识:
- 基本的AI和机器学习概念。
- 对至少一种主流大语言模型(LLM)如GPT系列、Claude、Gemini等有初步了解和使用经验。
- 基础的编程能力(如Python),以便进行API调用和自动化测试(部分任务)。
- 强烈的学习欲望和每天投入1-2小时学习与实践的决心。
- 推荐工具:
- 主流LLM的Web界面(如ChatGPT、Claude Web、Gemini Pro Web)。
- 主流LLM的API访问权限(如OpenAI API, Anthropic API, Google AI Studio)。
- 代码编辑器(如VS Code)。
- 笔记软件(如Notion, Obsidian, OneNote)用于记录学习心得和整理提示模板。
- 版本控制工具(如Git)用于管理提示模板和相关代码(可选,推荐)。
- 学习心态:
- 实践出真知: 提示工程是实践性极强的技能,务必完成每日的实践任务。
- 拥抱不确定性: AI模型行为并非完全可预测,实验和迭代是常态。
- 批判性思维: 不要迷信任何“完美提示公式”,要理解背后的原理并灵活应用。
- 分享与交流: 鼓励将你的学习成果和困惑与同行交流。
正文:30天挑战每日任务清单
第一阶段:筑基 - 提示工程基础(第1-7天)
阶段目标: 理解提示工程的定义、重要性、基本原则和核心基础技巧,能够写出清晰、明确的基础提示。
第1天:提示工程概览与重要性认知
- 学习目标:
- 理解什么是提示工程(Prompt Engineering)。
- 认识到提示工程在AI应用开发中的核心作用,特别是对架构师而言。
- 了解提示工程的基本挑战和价值。
- 核心任务:
- 理论学习(30分钟):
- 阅读关于提示工程定义和重要性的文章/教程(推荐:OpenAI官网指南、Anthropic Claude文档中的提示建议、相关技术博客)。
- 思考:为什么说提示工程是AI应用架构师的“语言”?它如何影响AI系统的性能、可靠性和用户体验?
- 案例分析(30分钟):
- 寻找并分析2-3个优秀的提示示例及其效果,再分析1-2个糟糕的提示及其改进空间。(可以在网上搜索,或使用你过往的经验)。
- 记录这些案例中提示的关键差异。
- 实践练习(30分钟):
- 选择一个你熟悉的LLM(如ChatGPT)。
- 任务A: 向AI描述你当前正在参与或感兴趣的一个AI项目(或构想一个),观察AI的回应。
- 任务B: 尝试改进你的提问方式,使其更清晰、更具体,再次观察回应的差异。
- 记录两次提问的对比和AI回应的质量差异。
- 理论学习(30分钟):
- 反思与总结(15分钟):
- 今天学到的最核心概念是什么?
- 你认为自己在提示工程方面目前最大的短板是什么?
- 简要记录今日学习心得。
第2天:提示工程的核心原则(一):清晰与明确
- 学习目标:
- 掌握“清晰”和“明确”这两个提示工程的首要原则。
- 学习如何通过精确的语言和结构来消除歧义。
- 核心任务:
- 理论学习(30分钟):
- 深入学习“清晰”和“明确”在提示工程中的具体含义。
- 理解模糊、歧义的提示对AI输出的负面影响。
- 学习实现清晰明确的技巧:使用祈使句、避免模糊词汇、指定输出格式等。
- 实践练习(45分钟):
- 练习A(模糊到清晰):
- 原始模糊提示:“写一些关于AI的东西。”
- 任务:逐步改进这个提示,使其主题(如AI伦理、AI在医疗的应用)、长度(如300字短文、5个要点)、风格(如科普、学术)、目标受众(如大众、技术人员)都清晰明确。
- 尝试3-4个不同版本的改进提示,比较AI的输出差异。
- 练习B(指定输出格式):
- 提示AI:“分析以下产品评论的情感,并列出主要优点和缺点。” 提供一段真实或虚构的产品评论。
- 第一次不指定格式,第二次明确要求:“情感分析结果请用‘正面/负面/中性’表示。主要优点和缺点请分别用 bullet points 列出,每个优点/缺点不超过20字。”
- 比较两次输出的结构化程度和信息提取效率。
- 练习A(模糊到清晰):
- 理论学习(30分钟):
- 反思与总结(15分钟):
- 如何判断一个提示是否足够“清晰明确”?
- 在你今天的练习中,哪些改进措施带来了最显著的效果?
- 记录2-3个帮助你写出更清晰明确提示的小技巧。
第3天:提示工程的核心原则(二):上下文与背景信息
- 学习目标:
- 理解上下文(Context)在提示工程中的关键作用。
- 学习如何有效地提供、组织和管理上下文信息。
- 核心任务:
- 理论学习(30分钟):
- 学习上下文如何帮助AI理解任务背景、用户意图和历史对话。
- 了解模型上下文窗口(Context Window)的概念及其对提示设计的限制。
- 学习提供上下文的技巧:相关性、简洁性、结构化。
- 实践练习(45分钟):
- 练习A(上下文的重要性):
- 提示1(无上下文):“他为什么会做出这个决定?” (观察AI的困惑或猜测)
- 提示2(有上下文):“[提供一段简短故事/新闻事件,描述‘他’面临的情境和做出的决定]。他为什么会做出这个决定?”
- 比较AI对两个提示的回答质量。
- 练习B(提供有效上下文):
- 假设你是一个电商网站的AI客服架构师,需要设计提示让AI能回答用户关于某个“特定订单延迟”的问题。
- 思考并列出AI回答此问题需要哪些关键上下文信息(例如:订单号、用户ID、下单时间、预计发货/送达时间、当前物流状态、延迟原因等)。
- 构造一个包含这些关键上下文的客服提示模板,并模拟一个用户查询和AI回应。
- 练习A(上下文的重要性):
- 理论学习(30分钟):
- 反思与总结(15分钟):
- 如何在有限的上下文窗口内,优先提供最重要的信息?
- 在你的实践中,缺乏上下文会导致AI出现哪些典型问题?
- 作为架构师,你如何设计系统来自动收集和注入必要的上下文到提示中?(初步思考)
第4天:提示工程的核心原则(三):指令与任务描述
- 学习目标:
- 掌握如何撰写清晰、具体、可执行的指令。
- 学习如何有效地描述任务目标和预期输出。
- 核心任务:
- 理论学习(30分钟):
- 学习指令的构成要素:动词(做什么)、对象(对什么做)、约束条件(怎么做/不能做什么)。
- 理解模糊指令和精确指令的区别。
- 学习使用“应该”、“必须”、“避免”等词来强化约束。
- 实践练习(45分钟):
- 练习A(指令精确化):
- 原始指令:“帮我优化这个代码。”
- 改进方向:明确优化目标(如执行速度、内存占用、可读性)、编程语言、关键函数、可以修改的范围等。
- 写出2-3个逐步精确化的指令版本,并对同一个简单代码片段(如一个排序函数)进行优化请求,比较结果。
- 练习B(任务与输出描述):
- 任务:让AI为一个新的“智能手表”产品生成营销文案。
- 提示1(简单描述):“给智能手表写营销文案。”
- 提示2(详细描述):“为一款面向25-35岁都市白领的新款智能手表撰写产品详情页营销文案。这款手表主打健康监测(心率、睡眠、血氧)、长续航(14天)和时尚设计(多种表带可选)。文案需突出‘科技与时尚融合,轻松掌控健康生活’的核心卖点,风格活泼有活力,长度约500字,包含3个小标题。”
- 比较AI对两个提示的响应,分析详细描述如何引导AI生成更符合预期的结果。
- 练习A(指令精确化):
- 理论学习(30分钟):
- 反思与总结(15分钟):
- 一个好的任务描述通常包含哪些要素?
- 在你今天的练习中,哪些指令修饰词或约束条件起到了关键作用?
- 作为架构师,如何确保系统向AI发送的指令始终是明确和一致的?
第5天:基础提示模式:零样本与少样本提示
- 学习目标:
- 理解零样本(Zero-Shot)和少样本(Few-Shot)提示的概念和适用场景。
- 掌握如何设计有效的少样本提示。
- 核心任务:
- 理论学习(30分钟):
- 学习零样本提示:当AI模型已具备足够知识,无需示例即可完成任务。
- 学习少样本提示:通过提供少量高质量示例(demonstrations)来引导AI理解任务模式和期望输出。
- 学习少样本提示的关键要素:示例的数量、质量、多样性、与目标任务的相似性。
- 实践练习(45分钟):
- 练习A(零样本应用):
- 尝试使用零样本提示让AI完成以下任务(选择2-3个):
- “将以下英文句子翻译成中文:‘Artificial intelligence is transforming the world.’”
- “判断这句话的情感:‘这款手机续航太差了,一天都撑不到!’”
- “告诉我‘光合作用’的定义。”
- 评估AI在零样本情况下的表现。
- 尝试使用零样本提示让AI完成以下任务(选择2-3个):
- 练习B(少样本提示设计):
- 任务:让AI将特定格式的日期(如“YYYY年MM月DD日”)转换为另一种格式(如“DD/MM/YYYY”)。
- 零样本尝试:直接让AI转换。
- 少样本尝试:提供2-3个正确的转换示例,然后再让AI转换新的日期。
- 比较两种方式的准确率。
- 再尝试一个更复杂的少样本任务,例如:情感分类(不仅仅是正负,而是细分为“非常满意”、“满意”、“一般”、“不满意”、“非常不满意”),并设计示例。
- 练习A(零样本应用):
- 理论学习(30分钟):
- 反思与总结(15分钟):
- 什么情况下你会选择使用少样本提示而非零样本提示?
- 设计少样本示例时,你认为最需要注意什么?
- 这些基础提示模式在你未来的AI应用架构中有哪些潜在应用场景?
第6天:基础提示模式:思维链提示(Chain of Thought, CoT)初探
- 学习目标:
- 理解思维链提示的基本概念和原理。
- 掌握“让我们逐步思考”(Let’s think step by step)等基础CoT触发方式。
- 核心任务:
- 理论学习(30分钟):
- 学习思维链提示如何通过引导AI展示推理过程来提升复杂问题解决能力。
- 理解为什么思维链能帮助AI处理需要多步推理的任务(如数学题、逻辑推理)。
- 了解基础的显式CoT(提供推理示例)和隐式CoT(仅提示“逐步思考”)。
- 实践练习(45分钟):
- 练习A(隐式CoT):
- 选择一个需要计算或推理的问题,例如:“一个商店有15个苹果,早上卖了5个,下午又进了8个,现在还有多少个苹果?”
- 第一次提示:直接问答案。
- 第二次提示:“让我们逐步思考,解决这个问题:一个商店有15个苹果,早上卖了5个,下午又进了8个,现在还有多少个苹果?”
- 比较AI的回答过程和准确性,特别是对于更复杂的数学问题或逻辑谜题。
- 练习B(简单显式CoT - 少样本CoT):
- 选择一个分类或推理任务,例如:“判断以下动物是否是哺乳动物:鲸鱼、企鹅、蝙蝠。”
- 设计一个少样本CoT提示,包含1-2个带有推理过程的示例,例如:
- “示例1:问题:猫是哺乳动物吗?
思考过程:哺乳动物通常具有胎生、哺乳、体表有毛等特征。猫是胎生,通过母猫的乳汁喂养幼崽,体表有毛。所以答案是:是。”
- “示例1:问题:猫是哺乳动物吗?
- 然后让AI回答目标问题,并观察其是否会模仿推理过程。
- 练习A(隐式CoT):
- 理论学习(30分钟):
- 反思与总结(15分钟):
- 思维链提示最适合解决什么样的问题?
- 在你的练习中,思维链是否显著提升了AI回答的准确性或可解释性?
- 作为架构师,你认为思维链在构建可解释AI系统中有何价值?
第7天:第一阶段回顾与实践 - 综合运用基础技巧
- 学习目标:
- 回顾和巩固第一阶段所学的提示工程基础概念和技巧。
- 综合运用这些技巧完成一个小型实践项目。
- 核心任务:
- 知识回顾(30分钟):
- 快速回顾第1-6天的学习内容,特别是:
- 提示工程的核心原则:清晰明确、提供上下文、明确指令。
- 基础提示模式:零样本、少样本、思维链。
- 在笔记本上画出这些概念的关系图或要点清单。
- 快速回顾第1-6天的学习内容,特别是:
- 综合实践项目(60分钟):
- 项目选择(三选一或自选类似项目):
- 项目A(文本处理): 设计一个提示,让AI对一篇你选择的新闻文章或博客文章进行以下处理:1) 生成一个不超过100字的摘要;2) 提取3-5个关键信息点;3) 判断文章的主要情感倾向并说明理由。
- 项目B(创意写作辅助): 设计一个提示,让AI根据你提供的故事开头(50-100字)和几个关键情节要素(如角色、冲突、转折点),续写一段300-500字的故事,要求风格统一,逻辑连贯。
- 项目C(简单决策辅助): 设计一个提示,模拟你正在考虑购买一款新的[产品,如笔记本电脑/相机],向AI提供你的预算、主要用途、偏好品牌等信息,请AI给出3个推荐选项,并分别说明推荐理由和潜在不足(使用思维链来解释其推荐逻辑)。
- 实践步骤:
- 明确你的任务目标和期望输出。
- 设计提示,综合运用清晰明确的指令、必要的上下文、可能的话加入少样本示例或思维链引导。
- 测试提示,根据AI的输出进行至少1-2轮的提示优化。
- 记录你的初始提示、优化过程和最终输出结果。
- 项目选择(三选一或自选类似项目):
- 知识回顾(30分钟):
- 反思与总结(30分钟):
- 在本次综合实践中,你遇到了哪些挑战?是如何通过调整提示来解决的?
- 第一阶段学习的哪些技巧对你最有帮助?哪些还需要进一步巩固?
- 你对提示工程的理解有哪些深化?
第二阶段:进阶 - 提示工程策略与模式(第8-17天)
阶段目标: 掌握更高级的提示策略和模式,能够处理更复杂的任务,引导AI进行深度思考和创造性输出,并理解提示工程的进阶原理。
第8天:高级思维链:少样本CoT与Zero-Shot-CoT的深入应用
- 学习目标:
- 深入理解少样本思维链(Few-Shot CoT)和零样本思维链(Zero-Shot CoT)的原理与差异。
- 掌握设计高质量CoT示例的技巧。
- 核心任务:
- 理论学习(40分钟):
- 回顾基础CoT概念。
- 学习Few-Shot CoT:如何选择和构建具有代表性的、包含清晰推理步骤的示例。
- 学习Zero-Shot CoT的典型触发句式(如“Let’s think step by step”或“首先,…,其次,…,因此…”)及其适用场景。
- 了解CoT在不同类型任务(数学推理、逻辑分析、常识问答)上的效果。
- 实践练习(50分钟):
- 练习A(Few-Shot CoT设计与评估):
- 选择一个中等复杂度的逻辑推理问题,例如:“小明比小红大3岁,小李比小明小1岁,小红今年10岁。小李今年多少岁?”
- 设计一个包含1-2个完整推理步骤示例的Few-Shot CoT提示。
- 用这个提示去解决目标问题和另一个同类型但不同数字的问题。
- 尝试改变示例的质量(例如,一个详细清晰,一个相对简略),观察对AI推理能力的影响。
- 练习B(Zero-Shot CoT的边界探索):
- 尝试用Zero-Shot CoT(“让我们逐步思考”)解决一系列难度递增的数学或逻辑问题。
- 记录哪些问题Zero-Shot CoT有效,哪些问题即使使用了Zero-Shot CoT,AI仍然容易出错,思考为什么。
- 例如:简单加法 -> 多步加减 -> 乘除混合 -> 应用题 -> 需要常识的复杂推理。
- 练习A(Few-Shot CoT设计与评估):
- 理论学习(40分钟):
- 反思与总结(30分钟):
- 设计Few-Shot CoT示例时,除了步骤清晰,还有哪些因素会影响效果?(如示例数量、多样性、难度)
- Zero-Shot CoT的优势是什么?它的局限性又在哪里?
- 你认为CoT提示在企业级AI应用中有哪些具体的落地场景?(例如,智能客服的复杂问题排查、数据分析助手的解释性报告)
第9天:提示工程中的角色引导与角色扮演(Role Prompting)
- 学习目标:
- 理解角色引导(Role Prompting)的原理和强大作用。
- 掌握如何通过设定AI角色来影响其输出风格、专业度和视角。
- 核心任务:
- 理论学习(30分钟):
- 学习角色引导如何通过为AI分配特定身份(专家、历史学家、创意作家等)来激活其相应领域的知识和表达风格。
- 理解角色描述中应包含的关键要素:身份、背景、专业领域、经验水平、沟通风格等。
- 了解角色引导与任务指令结合的方式。
- 实践练习(60分钟):
- 练习A(同一问题,不同角色):
- 选择一个开放性问题,例如:“如何看待人工智能对未来就业市场的影响?”
- 设计3个不同的角色提示:
- “你是一位资深的经济学家,专注于劳动力市场研究。请分析人工智能对未来就业市场的影响。”
- “你是一位科幻作家,以想象力丰富著称。请描述人工智能可能对未来就业市场带来的颠覆性场景。”
- “你是一位关注普通劳动者权益的社会活动家。请从保护劳动者的角度,谈谈人工智能对未来就业市场的挑战与机遇。”
- 对同一问题使用不同角色提示,比较AI输出的侧重点、语言风格和深度。
- 练习B(角色+任务+风格):
- 任务:撰写一份关于“量子计算基础”的介绍材料。
- 角色:“你是一位经验丰富的高中物理老师,擅长用生动形象的比喻解释复杂概念。”
- 附加要求:“内容要通俗易懂,避免过多公式,适合对科学感兴趣的高中生阅读,长度约800字,并包含2-3个生活中的类比。”
- 评估AI是否能很好地融合角色、任务和风格要求。尝试调整角色描述的细节,观察输出变化。
- 练习A(同一问题,不同角色):
- 理论学习(30分钟):
- 反思与总结(30分钟):
- 角色引导为什么能显著影响AI的输出?其背后可能的机制是什么?
- 在设计角色提示时,哪些描述性词语或要素对你来说最有效?
- 思考在你负责的AI应用中,如何利用角色引导来提升用户体验或完成特定功能(例如,让客服AI更耐心,让法律顾问AI更严谨)。
第10天:提示工程的迭代与优化方法论
- 学习目标:
- 掌握系统化提示迭代与优化的流程和方法。
- 学习如何分析AI输出,定位提示问题,并进行针对性改进。
- 核心任务:
- 理论学习(40分钟):
- 学习提示优化的闭环流程:设计 -> 测试 -> 分析 -> 修改 -> 再测试。
- 学习如何评估提示效果:准确性、相关性、完整性、风格一致性、简洁性等。
- 学习常见的提示问题诊断:指令模糊、上下文不足、缺乏示例、角色不明、约束缺失等。
- 了解A/B测试在提示优化中的应用。
- 实践练习(60分钟):
- 练习A(提示问题诊断与优化):
- 选择一个你之前设计的不太理想的提示(或者故意设计一个有缺陷的提示)。例如:“写点关于环保的内容。”(过于宽泛)
- 记录AI的输出。
- 分析输出的问题所在(如主题不聚焦、深度不够、结构混乱)。
- 诊断提示中可能存在的问题(如指令不明确、缺乏上下文/约束)。
- 针对性地修改提示,进行至少两轮迭代优化。
- 记录每次迭代的提示变化和输出变化,总结经验。
- 练习B(A/B测试简单实践):
- 针对同一个任务(例如:写一封产品推荐邮件给潜在客户),设计两个略有不同的提示版本(版本A和版本B)。差异可以体现在:语气(正式vs亲切)、强调的卖点(价格vs质量)、提供的上下文(客户背景信息多少)。
- 使用相同的初始条件,分别用A和B提示AI生成内容。
- 从预设的评估维度(如吸引力、信息清晰度、说服力)对两个版本的输出进行比较和打分,判断哪个提示更优。
- 练习A(提示问题诊断与优化):
- 理论学习(40分钟):
- 反思与总结(20分钟):
- 在提示优化过程中,你认为最难的环节是什么?如何克服?
- 除了直觉和经验,还有哪些客观的方法可以帮助你判断提示的好坏?
- 这个迭代优化的方法论如何融入到你的AI应用开发流程中?
第11天:复杂任务拆解与多步骤提示设计
- 学习目标:
- 掌握将复杂任务拆解为子任务的策略。
- 学习如何设计多步骤提示或提示序列来引导AI完成复杂任务。
- 核心任务:
- 理论学习(30分钟):
- 理解“分而治之”(Divide and Conquer)思想在提示工程中的应用。
- 学习任务拆解的原则:独立性、完整性、有序性、可执行性。
- 学习两种多步骤提示模式:
- 单轮多步骤提示: 在一个提示中清晰列出多个步骤和期望。
- 多轮对话式提示: 通过多轮交互,逐步引导AI完成任务,上一轮输出作为下一轮输入/上下文。
- 实践练习(60分钟):
- 练习A(单轮多步骤提示设计):
- 选择一个可以明显拆解为多个步骤的复杂任务,例如:“为一款新上市的[智能水杯]创建一份社交媒体营销计划。”
- 将其拆解为子任务,例如:1) 分析目标用户特征;2) 确定核心营销卖点(3个);3) 建议3个适合的社交媒体平台及理由;4) 为每个平台构思1个初步的帖子创意。
- 设计一个单轮提示,清晰地指导AI按照这些步骤完成任务,并对每一步的输出格式提出要求。
- 测试并评估AI是否能按步骤完成并整合结果。
- 练习B(多轮对话式提示实践):
- 选择上述任务或另一个复杂任务(如“撰写一份小型市场调研报告”)。
- 尝试通过多轮对话来完成:
- 第一轮:明确任务和获取初步想法/框架。
- 第二轮:针对某个子任务(如确定调研问题)进行深入探讨和细化。
- 第三轮:基于前两轮结果,生成部分内容(如调研方法)。
- 后续轮次:继续完善其他部分,直至任务完成。
- 记录每一轮的提示和AI的回应,感受逐步深入的过程。
- 练习A(单轮多步骤提示设计):
- 理论学习(30分钟):
- 反思与总结(30分钟):
- 什么时候适合使用单轮多步骤提示,什么时候适合使用多轮对话式提示?
- 在任务拆解时,你是如何决定子任务的粒度和顺序的?
- 作为架构师,这种任务拆解和多步骤引导的思想,如何帮助你设计更可靠的AI工作流?
第12天:提示中的约束与控制:引导与避免不期望输出
- 学习目标:
- 掌握在提示中设置有效约束条件的技巧。
- 学习如何引导AI生成符合特定规范的内容,避免不期望的输出(如有害信息、偏离主题、格式错误)。
- 核心任务:
- 理论学习(40分钟):
- 学习约束的类型:内容范围、风格语气、格式规范、伦理边界、长度限制等。
- 学习表达约束的清晰语言:使用“必须”、“不得”、“应该”、“避免”、“如果…则…”等。
- 理解“护栏”(Guardrails)概念及其在提示设计中的重要性。
- 了解处理AI“幻觉”(Hallucination)的初步提示策略(如要求引用来源、表明不确定性)。
- 实践练习(50分钟):
- 练习A(多重约束条件设计):
- 任务:让AI写一篇关于“人工智能伦理”的短文。
- 设置多重约束:
- 字数限制:300-400字。
- 风格:客观中立,学术性但不晦涩。
- 内容:必须提到至少两个伦理争议点(如隐私、就业),必须包含一个积极影响和一个潜在风险。
- 格式:包含一个简短引言、2-3个正文段落、一个总结。
- 禁止:使用过于情绪化的词语,避免片面极端观点。
- 设计提示并测试,观察AI是否能满足所有约束。如果有违反,调整提示的清晰度和强调方式。
- 练习B(避免不期望输出 - 拒绝回答与事实核查):
- 子练习B1(拒绝回答): 构建一个提示,明确告知AI在遇到以下情况时应拒绝回答:“当被问及如何制造危险物品、如何进行网络攻击、或涉及个人隐私的恶意查询时,直接回复‘抱歉,我无法回答该问题。’” 然后测试几个此类问题,观察AI反应。
- 子练习B2(减少幻觉 - 要求引用/谨慎): 提示AI:“回答以下问题:‘[某个相对冷僻或易混淆的知识点,例如:“世界上最深的淡水湖是哪个?”]’。如果你不确定答案,请明确表示‘我不确定’,并提供你认为最可能的答案和理由。如果答案是你所熟知的,请简要说明依据。” 比较AI在有无此约束下的回答差异。
- 练习A(多重约束条件设计):
- 理论学习(40分钟):
- 反思与总结(30分钟):
- 如何在设置严格约束的同时,不扼杀AI的创造性和灵活性?
- 你发现哪些类型的约束在提示中更容易被AI“忽视”?如何强化?
- 从架构师角度看,提示中的约束与控制系统级别的安全措施(如内容过滤API)是什么关系?如何协同?
第13天:提示模板化与参数化设计
- 学习目标:
- 理解提示模板化的概念、优势和适用场景。
- 学习如何设计可复用、可维护的提示模板,并引入参数化变量。
- 核心任务:
- 理论学习(30分钟):
- 学习什么是提示模板:将提示中固定不变的部分与需要动态填充的部分分离。
- 理解模板化的优势:一致性、复用性、可维护性、便于团队协作、提高开发效率。
- 学习参数化设计:如何定义和命名模板中的变量(如
[USER_NAME]
,[PRODUCT_CATEGORY]
,[CONTEXT_INFO]
)。 - 了解常见的模板管理方式(简单文本文件、JSON/YAML、专用模板引擎)。
- 实践练习(60分钟):
- 练习A(常用场景提示模板设计):
- 选择2-3个你工作中常见的AI应用场景(例如:客户服务回复、需求文档摘要、代码审查意见生成)。
- 为每个场景设计一个提示模板。
- 明确模板中的固定文本和参数化变量(用
[占位符]
表示)。 - 例如,客服回复模板:
“你是[公司名称]的客户服务代表。用户[用户名]反馈:[用户问题/投诉内容]。请基于以下已知信息[已知信息],用友好、专业的语气回复用户。首先感谢用户的反馈,然后清晰解答问题/说明处理方案。如果无法立即解决,告知用户预计处理时间和后续联系渠道。回复不要超过200字。”
- 练习B(模板填充与测试):
- 为你设计的其中一个模板填充具体参数值。
- 使用填充后的提示调用AI,评估输出效果。
- 尝试修改不同的参数值,观察输出变化,验证模板的灵活性。
- 思考如何在代码中实现这种模板填充逻辑(例如,使用Python的f-string或format方法)。
- 练习A(常用场景提示模板设计):
- 理论学习(30分钟):
- 反思与总结(30分钟):
- 在设计提示模板时,如何平衡模板的通用性和场景的特殊性?
- 参数的命名和组织有哪些最佳实践可以提高模板的可读性和易用性?
- 作为架构师,你认为在团队中推广和管理提示模板有哪些挑战和价值?
第14天:利用AI进行自我提示优化与反思(Reflexion)
- 学习目标:
- 了解利用AI自身来帮助分析和优化提示的方法。
- 初步接触“反思”(Reflexion)机制在提示工程中的应用。
- 核心任务:
- 理论学习(30分钟):
- 学习“提示工程师的AI助手”概念:使用AI来分析提示的质量。
- 了解Reflexion(反思)提示工程:引导AI对其自身的输出进行评估、自我批评,并基于反馈进行改进。
- 学习基本的提示优化提示(Prompt for Prompt Optimization)的结构。
- 实践练习(60分钟):
- 练习A(AI辅助提示分析):
- 拿出你之前设计的一个提示(可以是第7天综合实践中的)。
- 设计一个“提示优化顾问”提示,例如:
“你是一位提示工程专家。请分析以下提示的优点和缺点,并提出具体的改进建议。
原始提示:[粘贴你的原始提示]
分析维度应包括:清晰度、指令明确性、上下文充分性、是否可能引发歧义、约束条件是否恰当、输出格式是否明确等。
请先列出优点,再列出缺点,最后给出详细的改进建议和修改后的提示版本。” - 将你的原始提示输入给AI(使用“提示优化顾问”角色),获取分析和建议。
- 根据AI的建议修改你的原始提示,并比较修改前后AI完成任务的效果。
- 练习B(引导AI自我反思与改进 - Reflexion):
- 选择一个任务(如写一段产品描述、解答一个复杂问题)。
- 步骤1: 用你当前的提示让AI生成初稿。
- 步骤2: 设计一个反思提示,例如:
“基于以下任务要求和你的回答,请进行自我评估:
任务要求:[粘贴原始任务提示]
你的回答:[粘贴AI生成的初稿]
评估标准:1) 是否完全满足了任务的所有要求?2) 内容的准确性和相关性如何?3) 逻辑是否清晰?4) 是否有可以改进的地方(例如更简洁、更有说服力、更具创意)?
请指出你的回答中存在的至少2个不足之处,并提出具体的修改方案。然后,根据你的修改方案,生成一个改进后的版本。” - 步骤3: 将反思提示和初稿一起输入给AI,获取其自我批评和改进版本。
- 比较初稿和改进版的差异。
- 练习A(AI辅助提示分析):
- 理论学习(30分钟):
- 反思与总结(30分钟):
- AI在帮助优化提示方面能提供多大程度的帮助?它的局限性在哪里?
- 你认为Reflexion机制最适合应用于哪些场景?
- 这种“AI辅助AI开发”的模式对你未来的工作方式有何启发?
第15天:高级提示模式:思维树(Tree of Thoughts, ToT)与迭代深化(Iterative Deepening)
- 学习目标:
- 了解思维树(ToT)和迭代深化(Iterative Deepening)等更高级的提示策略。
- 理解这些策略如何处理需要探索多种可能性或多路径推理的复杂任务。
- 核心任务:
- 理论学习(40分钟):
- 学习思维树(Tree of Thoughts):将问题分解为多个思考步骤(节点),每个步骤可能有多个可能的思路(分支),AI对这些分支进行评估、修剪和探索,最终找到最优解。它比CoT更强调探索和评估。
- 学习迭代深化(Iterative Deepening):AI生成初步答案,然后反复对其进行评估、修改和完善,逐步提升输出质量和深度。
- 理解这些高级策略的适用场景:创意生成(如头脑风暴多个方案)、复杂决策、需要多路径探索的问题解决。
- (由于ToT实现较复杂,今日侧重理解概念和简单应用)
- 实践练习(50分钟):
- 练习A(模拟ToT - 多路径思考引导):
- 选择一个需要发散思维和多方案比较的任务,例如:“为一家小型咖啡馆设计3-5个低成本有效的营销活动方案。”
- 设计一个提示,引导AI进行类似ToT的思考:
- 首先,列出至少5个可能的营销方向(如社交媒体推广、社区合作、会员体系、主题活动、跨界联名等)。
- 然后,对每个方向进行简要可行性和预期效果评估(高/中/低)。
- 最后,选择评估较高的3个方向,详细阐述具体方案。
- 观察AI是否能按照这个多步骤、多分支的思路进行思考和输出。
- 练习B(迭代深化 - 逐步完善):
- 任务:撰写一篇关于“[某个你感兴趣的技术趋势,如AIGC]对[某个行业,如内容创作]未来五年影响”的分析文章大纲。
- 步骤1(初稿): 提示AI“请为我写一个关于…的分析文章大纲,包含主要章节标题。”
- 步骤2(评估与反馈): 自己或让AI(扮演审阅者)评估大纲:“这个大纲是否全面?是否有重要方面遗漏?结构是否清晰?” 记录反馈点(如:缺少“挑战与风险”章节,对“具体应用场景”描述不足)。
- 步骤3(深化与改进): 提示AI:“根据以下反馈,改进你的大纲:[列出反馈点]。请扩展每个章节的子要点,使其更具体。”
- 步骤4(再次深化 - 可选): 重复评估和改进过程1-2次,观察大纲质量的提升。
- 练习A(模拟ToT - 多路径思考引导):
- 理论学习(40分钟):
- 反思与总结(30分钟):
- 与CoT相比,ToT解决问题的思路有何本质不同?
- 迭代深化策略中,提供高质量的“反馈”和“评估标准”对最终结果至关重要,如何确保反馈的质量?
- 这些高级提示模式对AI模型的能力有更高要求吗?在实际应用中如何权衡复杂度和效果?
第16天:提示工程与特定任务优化(一):文本摘要与信息提取
- 学习目标:
- 掌握针对文本摘要和信息提取这两类常见任务的专门提示策略和技巧。
- 能够根据需求设计出高效的摘要和提取提示。
- 核心任务:
- 理论学习(30分钟):
- 文本摘要任务:
- 了解不同类型的摘要:提取式(Extractive)vs 抽象式(Abstractive)。
- 关键提示要素:源文本、摘要长度(字数/句子数限制)、侧重点(核心观点/关键事实/主要结论)、风格(简洁/详细/保留技术术语)。
- 常用技巧:明确指示“保留关键数据”、“忽略细节描述”、“以…为重点进行总结”。
- 信息提取任务:
- 了解结构化信息提取:从非结构化文本中提取特定实体(Entities)、关系(Relationships)、事件(Events)等。
- 关键提示要素:待提取的信息类型(如人名、日期、地点、产品特性、问题点)、输出格式(如表格、JSON、特定分隔符)、提取标准(严格匹配/模糊匹配)。
- 常用技巧:提供实体定义、给出提取示例(少样本)、指定输出模板。
- 文本摘要任务:
- 实践练习(60分钟):
- 练习A(文本摘要优化):
- 找一篇中等长度的文章/新闻/报告(300-500字)作为源文本。
- **版本
- 练习A(文本摘要优化):
- 理论学习(30分钟):