- 博客(901)
- 收藏
- 关注
原创 提示工程架构师:优化提示系统设计的10个步骤
当大语言模型(LLM)从“实验工具”进化为“企业核心生产力”,提示工程已从“零散的prompt技巧”升级为“系统化的工程设计”。本文以提示工程架构师的视角,结合第一性原理与实战经验,拆解优化提示系统的10个关键步骤——从需求建模到迭代演化,覆盖“为什么做”“怎么做”“用什么工具”的全链路逻辑。无论是电商客服、医疗咨询还是工业智能场景,这套框架能帮你构建一致、通用、可维护、易扩展的提示系统,将大模型的能力转化为稳定的业务价值。提示工程架构师的核心任务是对齐“用户需求”“模型能力”与“业务约束”
2025-09-16 01:25:36
157
原创 深入了解大数据领域的数据清洗技术
在大数据时代,数据规模呈现爆炸式增长,数据来源广泛且复杂。然而,这些数据往往存在大量的噪声、缺失值、异常值等问题,严重影响了数据的质量和可用性。数据清洗作为大数据预处理的关键环节,其目的在于去除数据中的杂质,提高数据的准确性、完整性和一致性,为后续的数据分析、挖掘和决策提供高质量的数据基础。本文的范围涵盖了数据清洗的各个方面,包括核心概念、算法原理、实际操作步骤、数学模型、项目实战、应用场景以及相关的工具和资源等,旨在为读者提供一个全面深入的大数据数据清洗技术的知识体系。
2025-09-15 23:53:37
380
原创 Hive on Spark:大数据处理的未来趋势
Hive与Spark的结合并非简单的"引擎替换",而是大数据处理生态的范式重构:Hive提供了SQL兼容性、元数据管理与成熟生态,Spark则注入了内存计算、迭代处理与流批一体的能力。本文从第一性原理出发,拆解Hive on Spark的技术本质——用Spark的计算力激活Hive的生态价值,并通过理论框架、架构设计、实现机制与实践案例,揭示其为何能成为未来大数据处理的核心趋势。我们将回答:Hive on Spark解决了传统大数据的哪些痛点?其架构如何实现"1+1>2"的协同?企业落地时需规避哪些陷阱?
2025-09-15 22:31:38
446
原创 大数据预处理入门:5个必知的数据清洗技巧
在大数据分析过程中,原始数据往往存在各种质量问题,如缺失值、重复值、异常值、噪声数据等。这些问题会严重影响数据分析的准确性和可靠性,因此需要进行数据清洗。本文的目的是为大数据预处理的初学者提供5个必知的数据清洗技巧,涵盖了常见的数据质量问题及其处理方法。范围包括对这些技巧的原理讲解、Python代码实现以及实际应用场景分析。本文将按照以下结构进行组织:首先介绍核心概念与联系,包括数据清洗的定义、重要性以及与大数据预处理的关系;
2025-09-15 20:54:29
256
原创 超震撼!提示工程架构师的Agentic AI可视化分析独特优势
Agentic AI(智能体AI)指的是能够在环境中感知、决策并执行动作以实现特定目标的自主系统。自主性(Autonomy): 能够在无需人类持续指导的情况下运行目标导向(Goal-directed): 能够理解高级目标并将其分解为可执行的任务环境交互(Environmental interaction): 能够感知并影响其所处的环境适应性(Adaptivity): 能够根据新信息或变化的环境调整行为持久性(Persistence): 能够在较长时间内持续工作以实现复杂目标。
2025-09-15 19:22:23
312
原创 社区服务中的Prompt应用:提示工程架构师的全解析
社区服务中的「AI落地最后一公里」——很多社区有AI工具(比如智能通知系统、机器人客服),但输出的内容总“不像人话”:要么太官方,要么漏关键信息,要么不符合老人、孩子的理解习惯。用Prompt工程让AI学会说“社区方言”,并讲清楚“提示工程架构师如何在社区场景中工作”。用「社区菜市场的AI帮手」故事引入Prompt的作用;拆解核心概念:Prompt、提示工程、提示工程架构师(用“给AI写菜谱”类比);讲解社区场景的Prompt设计原则(比如“老人能听懂”的3个技巧);
2025-09-15 16:13:08
501
原创 AI原生决策支持:从数据到决策的完整技术路线图
企业每天产生海量数据(如零售的交易记录、制造的设备传感器数据、金融的用户行为日志),但80%的数据未被有效利用。传统决策依赖人工分析报表,存在滞后性(T+1报表无法应对实时变化)、主观性(经验判断可能偏差)、复杂度局限(多变量关联难以人工计算)三大痛点。本文聚焦“AI原生决策支持”——即从系统设计之初就以AI为核心驱动力,实现“数据→分析→决策→执行→反馈”的全自动闭环,覆盖零售、金融、医疗等多行业通用技术路线。用“超市智能补货”故事引出AI决策的必要性;拆解数据层、模型层、决策层的核心概念;
2025-09-15 14:35:58
412
原创 智能资源调度AI引擎:AI应用架构师的跨领域应用实践
当我们在双11抢购时,云计算平台如何快速分配算力支撑百万级并发?当我们在早高峰堵在路口时,交通信号灯如何动态调整时长减少拥堵?当我们期待快递早日送达时,物流系统如何优化路线让快递员高效派件?这些问题的背后,都有一个共同的解决方案——智能资源调度AI引擎。本文结合AI应用架构师的实践经验,深入解析智能资源调度AI引擎的核心原理、技术架构及跨领域应用案例。
2025-09-15 13:13:57
454
原创 Flink在大数据领域的核心优势解析
Flink的设计理念是**“流是最基本的数据模型,批是流的特例”**。换句话说,Flink从底层开始就是为流处理打造的,而批处理只是流处理的一种“有限时间窗口”的情况。Spark Streaming是微批处理(Micro-Batch):把流数据切成小批量(比如1秒一批)处理,本质还是批处理,延迟只能到秒级;Storm是纯流处理,但缺乏高层API和状态管理;Flink是原生流处理:数据以“事件流”的形式连续流动,算子(Operator)逐个处理事件,延迟可以做到毫秒级。
2025-09-15 11:36:44
366
原创 数据产品创新:区块链技术在大数据产品中的应用
大数据时代,数据被称为“数字石油”,但“数据孤岛”“信任缺失”“隐私泄露”等问题像三座大山,阻碍了数据价值的充分释放。当区块链技术的“信任机器”与大数据的“价值金矿”相遇,一场数据世界的信任革命正在悄然发生。本文将从大数据产品的痛点出发,用生活化的比喻拆解区块链的核心逻辑,详细解析两者融合的技术原理,并通过真实案例展示区块链如何赋能数据产品创新——从数据交易的“信任背书”到隐私保护的“智能护盾”,从供应链数据的“全链路溯源”到医疗数据的“安全共享”。
2025-09-15 09:59:35
493
原创 企业AI效能度量框架:从KPI到OKR,架构师的指标设计技巧
AI项目的痛点从来不是“能不能做”,而是“做得好不好”——技术团队说“模型精度98%,业界顶尖”,业务团队说“用户没感觉,销量没涨”;老板问“这AI值多少钱”,架构师翻遍报表只找到“服务器成本10万”;项目上线3个月,没人能说清“到底有没有用”。范围覆盖:AI项目从研发(模型训练)→ 部署(推理服务)→ 落地(业务应用)的全生命周期;核心问题:如何设计“既懂技术,又懂业务”的指标,让技术团队的努力“被看见”,让业务团队的需求“被满足”。先拼基础块:讲清AI效能、KPI、OKR的核心概念;
2025-09-15 03:36:02
782
原创 提示工程的9种优化方法:腾讯架构师的实践,解决所有问题
你有没有过这样的经历?用AI写文案,结果它扯了一堆无关内容;让AI解答问题,它却答非所问;甚至让AI处理专业任务,它给出的结果漏洞百出。不是AI笨,是你没“教”会它怎么干活——就像你去餐厅点奶茶,说“给我杯奶茶”,服务员可能给你全糖冰饮,但你其实要半糖少冰。提示工程(Prompt Engineering)就是这份“精准点单指南”:通过设计和优化输入给AI的文本,让AI听懂你的需求、遵循你的规则、生成符合预期的结果。
2025-09-15 02:14:04
379
原创 大数据OLAP技术架构深入剖析
场景推荐系统实时监控/用户行为分析多数据源即席查询固定报表/多维分析Kylin时间序列数据DruidOLAP技术的所有设计,都是围绕“高效支持多维度分析”这个核心目标。从列式存储到MPP架构,从预计算Cube到查询优化,每一个技术都是为了让“分析”更快速、更灵活。对于企业来说,选择OLAP系统的关键是匹配场景实时分析选ClickHouse或Druid;即席查询选Presto;固定报表选Kylin。对于工程师来说,深入理解OLAP的架构原理,才能更好地优化系统、解决问题。
2025-09-15 00:42:00
668
原创 大数据领域实时分析:优化业务流程的利器
在当今数字化时代,企业面临着海量数据的挑战与机遇。大数据实时分析旨在从大量的、快速产生的数据中即时提取有价值的信息,以支持企业做出及时、准确的决策,从而优化业务流程。本文章的范围涵盖大数据实时分析的基本概念、核心算法、实际应用场景以及相关工具和资源等方面,帮助读者全面了解大数据实时分析如何成为优化业务流程的有效手段。本文将按照以下结构进行阐述:首先介绍大数据实时分析的核心概念与联系,包括其原理和架构;接着详细讲解核心算法原理及具体操作步骤,并辅以Python代码;然后给出相关数学模型和公式并举例说明;
2025-09-14 23:04:51
492
原创 实战!基于K8s的提示工程数据脱敏方案
在当今数字化时代,数据就如同企业的命脉,承载着各类关键信息。想象一下,一家金融科技公司,每天处理着海量客户的交易数据、个人身份信息等。这些数据一旦泄露,不仅会给客户带来巨大的损失,公司也将面临严重的法律风险和声誉危机。而随着人工智能技术的发展,提示工程作为优化模型输出的重要手段,在处理数据时同样面临数据安全问题。比如,在利用大型语言模型进行文本生成任务时,若输入数据包含敏感信息,如用户的身份证号、银行卡号等,这些信息可能会在不经意间随着模型输出而暴露。
2025-09-14 21:32:58
547
原创 大数据领域分布式存储的机器学习数据管理
在当今大数据时代,机器学习技术正以前所未有的速度发展。机器学习算法需要大量的数据进行训练和优化,而这些数据通常具有海量、高维、多源异构等特点。分布式存储作为一种能够有效处理大规模数据的技术,为机器学习数据的存储和管理提供了强大的支持。本文的目的在于深入探讨大数据领域中分布式存储环境下的机器学习数据管理问题,涵盖了从数据的存储架构设计、数据的预处理、数据的访问和检索,到数据的安全和隐私保护等多个方面。我们将详细介绍相关的技术原理、算法实现以及实际应用案例,为读者提供一个全面而深入的了解。
2025-09-14 20:11:02
793
原创 实时大数据架构设计:Flink+Kafka最佳实践全解析
在当今数字化时代,数据以指数级增长,实时处理海量数据变得至关重要。实时大数据架构旨在能够快速、高效地处理和分析不断流入的数据,为企业提供及时的决策支持。本文章的目的是深入解析如何使用Flink和Kafka构建一个高效的实时大数据架构,并通过最佳实践案例展示其应用。本文的范围涵盖了Flink和Kafka的核心概念、算法原理、数学模型、项目实战、实际应用场景等方面,旨在为读者提供一个全面的实时大数据架构设计的知识体系。本文将按照以下结构进行阐述:首先介绍Flink和Kafka的背景知识和相关术语;
2025-09-14 18:49:07
544
原创 HBase的读写机制,大数据存储的核心要点
HBase的读写机制是其支撑大数据存储写操作:通过WAL保证可靠性,通过MemStore提高性能,通过HFile实现持久化;读操作:通过BlockCache提高缓存命中率,通过MemStore减少磁盘IO,通过HFile实现快速查询;性能优化:通过RowKey设计、列族设计、配置调优,实现高并发、低延迟的读写。掌握这些机制,你就能真正理解HBase的本质,并能在实际项目中高效使用HBase。“简单的事情做极致,复杂的事情做简化”
2025-09-14 17:27:07
347
原创 提示工程质量保证体系:2024年的2个关键趋势
维度定义示例问题准确性提示传递的意图与用户真实需求的一致性用户要“环保材料的书包”,提示写“便宜的书包”,导致输出推荐低价非环保产品一致性相同提示在相同输入下输出结果的稳定性同一提示在不同时间调用LLM,输出的文案风格差异过大鲁棒性输入微小变化(如同义词替换、语法错误)时,输出保持正确的能力提示“帮我订明天上午的机票”,输入改为“帮我订明日上午的机票”,输出变成“无结果”安全性提示避免诱导LLM生成有害/违规内容的能力提示“教我破解WiFi密码”,LLM输出详细步骤。
2025-09-14 16:05:11
654
原创 认知架构设计模式:AI原生应用开发指南
当我们谈论"AI原生应用"时,不再是简单调用API实现聊天功能,而是要构建能"理解场景、记住历史、持续进化"的智能体。本文聚焦这类应用的核心架构——认知架构,系统讲解其设计模式、关键模块及实战方法,覆盖从基础概念到代码实现的完整链路。本文将按照"概念→原理→实战"的递进逻辑展开:首先用故事引出认知架构的重要性,然后拆解核心模块(多模态感知、上下文管理等)的工作原理,接着通过数学模型和代码示例讲解技术细节,最后结合实际场景展示落地方法,帮助读者建立从理论到实践的完整认知。AI原生应用。
2025-09-14 14:33:08
870
原创 独家手法!AI应用架构师为智能数字体验设计平台注入创新活力的方式
随着数字体验成为企业差异化竞争的核心,传统设计工具已无法满足“高效、个性化、实时化”的需求。本文从AI应用架构师的视角,系统阐述智能数字体验设计平台(Intelligent Digital Experience Design Platform, IDXDP)的架构创新逻辑:通过用户意图感知生成式设计引擎动态适配层反馈优化闭环四大核心模块,将AI技术深度嵌入设计全流程。
2025-09-14 13:11:13
571
1
原创 企业数字空间设计的100个知识点:AI应用架构师的精华总结
想象一下:你是一家制造企业的老板,每天要处理100+个流程审批、200+条客户投诉、300+个设备故障报警——这些信息散落在Excel、ERP、微信群里,像一团乱麻。你想知道“哪些客户是高价值的?”“哪些设备要马上维护?”“哪些流程在浪费时间?”,但没人能给你准确答案。企业数字空间的核心目的,就是把这些“乱麻”变成“智能网络”:用AI把分散的数据、流程、人员连接起来,让企业像“有脑子的人”一样,能感知(收集信息)、会思考(分析决策)、能行动(执行优化)。本文的范围。
2025-09-14 11:34:02
500
原创 提示工程架构师进阶指南:多模态提示中的情感共鸣设计(文本+语音+图像)
嘿,小朋友们!想象一下,你在和一位AI朋友聊天时,它不仅能听懂你的话,还能用温柔的声音和生动的图像安慰你,就像一位贴心的老师。这就是多模态提示(结合文本、语音和图像)的魅力。但是,如何设计这些提示,让AI不只聪明,还懂人心?这就是本文的魔法任务!目的:我作为AI专家,要指导您—提示工程架构师(像是AI城堡的建筑师),如何进阶设计情感共鸣的多模态提示系统。范围:覆盖文本提示优化、情感嵌入机制(让AI有“心情”)、语音/图像融合算法,以及实战开发。从原理到代码,一步步揭秘。核心概念与联系。
2025-09-14 10:12:04
867
原创 大数据领域数据共享的关键技术与应用案例
本文旨在系统性地介绍大数据领域中数据共享的关键技术,包括其原理、实现方法和应用场景。数据共享的技术架构和核心组件数据隐私保护与安全共享机制跨组织数据协作的技术解决方案典型行业应用案例分析本文的范围涵盖从基础理论到实际应用的完整知识体系,适合希望深入了解大数据共享技术的开发者和架构师。背景介绍:提供数据共享的基本概念和背景知识核心概念与联系:阐述数据共享的技术架构和关键组件核心算法原理:深入分析数据共享中的关键算法数学模型:介绍支持数据共享的数学理论基础。
2025-09-14 03:33:08
231
原创 揭秘大数据领域分布式计算的高效算法
当数据量突破单节点处理能力的边界,分布式计算成为大数据时代的核心引擎。本文从第一性原理出发,拆解分布式计算的底层逻辑:从Amdahl定律的并行性边界,到MapReduce的“分割-合并”范式,再到Spark的内存计算与Flink的流批一体化设计。我们将通过数学推导架构可视化和生产级代码示例,揭示“高效”的本质——如何平衡数据本地化通信开销容错机制与负载均衡。无论是入门者想理解分布式计算的核心问题,还是资深工程师想优化生产环境的任务性能,本文都将提供一套可落地的思维框架与实践指南。
2025-09-14 02:01:03
358
原创 揭秘大数据领域数据预处理的核心要点
在大数据时代,数据量呈现爆炸式增长,这些数据来源广泛,包括社交媒体、传感器、企业业务系统等。然而,这些原始数据往往存在大量的噪声、缺失值、重复值等问题,数据的质量参差不齐。数据预处理的目的就是对这些原始数据进行清洗、转换和集成等操作,以提高数据的质量,为后续的数据分析、挖掘和机器学习等任务提供高质量的数据基础。本文的范围涵盖了大数据领域数据预处理的主要方面,包括数据清洗、数据集成、数据转换、数据归约等核心环节,以及相关的算法和技术。
2025-09-14 00:34:12
669
原创 芯片设计自动化的AI技术全景图,建议收藏!
当摩尔定律步入“后黄金时代”,芯片设计的复杂度已远超人类手工与传统启发式算法的处理极限——百亿晶体管、纳米级工艺约束、PPA(性能/功耗/面积)的三角平衡,成为当代芯片工程师的“不可能三角”。AI技术的介入,为EDA带来了数据驱动的组合优化能力:从功能验证的波形预测到布局布线的强化学习,从时序签核的ML建模到物理验证的CV缺陷检测,AI正在重构EDA的全流程范式。
2025-09-13 23:12:16
575
原创 新闻媒体的革新密码:提示工程架构师破解
目的:帮你看懂“提示工程”为什么能成为新闻媒体的“革新密码”——它不是高深的AI技术,而是“把人类需求翻译成AI能听懂的话”的方法论。范围:覆盖新闻生产全流程(选题→素材→写稿→编辑→分发→反馈),用3个生活类比、2段代码、1个实战项目,讲清提示工程的“底层逻辑”和“实战技巧”。预期读者媒体从业者(想借AI提高效率但不会用的记者/编辑);AI爱好者(想了解提示工程在具体行业的应用);职场新人(想提前掌握“AI协作”核心技能)。故事引入:用记者小张的熬夜经历,引出“AI写稿但不好用”的痛点;
2025-09-13 21:40:09
875
原创 大数据领域存算分离的发展趋势预测
存算分离不是一个全新的概念,早在云计算诞生之初,“存储即服务(SaaS)”和“计算即服务(IaaS)”的分离就已经是云架构的核心原则。狭义存算分离:物理上的分离,即计算节点和存储节点是独立的服务器,计算节点不挂载本地存储,所有数据都存储在远程存储系统中;广义存算分离:逻辑上的分离,即计算和存储通过API接口实现松耦合,即使它们运行在同一台服务器上,也可以独立调度(比如通过容器化技术将计算进程与存储进程隔离)。无状态计算:计算节点不保存任何持久化数据,所有数据都来自存储层,重启或迁移计算节点不会丢失数据。
2025-09-13 20:02:58
279
原创 AI原生应用领域内容过滤的算法优化与改进
本文聚焦“AI原生应用”这一特殊场景(即从产品设计初期就深度依赖AI能力的应用,如ChatGPT、DALL·E、小红书AI笔记助手),探讨其内容过滤的独特挑战与算法优化方案。我们将覆盖文本、图像、视频等多模态内容,重点分析大语言模型(LLM)、多模态模型在过滤场景中的适配性改进。本文从“为什么需要优化”入手,用故事引出核心概念;通过生活化比喻解释技术原理,结合Python代码演示关键算法;最后以实战案例说明如何落地优化方案,并展望未来趋势。AI原生应用。
2025-09-13 18:26:01
607
原创 提示工程架构师职业路径:从初级到资深,AI提示系统创新能力如何进阶
当ChatGPT、Claude等大模型成为企业数字化转型的“基础设施”,一个新的职业——提示工程架构师(Prompt Engineering Architect)——正从幕后走向台前。为什么同样的大模型,有些团队能做出精准的客服系统,有些却连“理解用户意图”都做不好?为什么单个prompt效果不错,但放到复杂业务场景(如医疗诊断、法律文书生成)就“翻车”?如何从“写一个好prompt”升级到“设计一套可复用、可扩展的提示系统”?本文将以“职业阶段”为横轴,“创新能力”为纵轴。
2025-09-13 17:04:06
537
原创 大数据领域数据溯源对决策的支持作用
数据溯源(Data Provenance),又称“数据 lineage”,是指记录数据从产生、处理、传输到消亡的整个生命周期的过程。来源(Source):数据是从哪里来的?比如用户的手机APP、传感器、第三方数据库。处理(Process):数据经过了哪些操作?比如清洗、过滤、聚合、机器学习模型预测。流向(Flow):数据被传输到了哪里?比如从Kafka到Spark,再到Hive表。用途(Usage):数据被用来做什么?比如生成报表、训练模型、支持决策。
2025-09-13 15:42:06
816
原创 超棒攻略!提示工程架构师的AI提示设计用户体验提升
本文将从“用户体验”视角重新定义提示工程——不再仅仅是“让AI听懂”,而是“让用户轻松写出AI能听懂的提示”。我们会系统拆解提示设计的UX核心要素,通过“用户旅程分析→提示结构优化→反馈设计→个性化适配→可访问性提升”五大步骤,结合真实案例与实操方法,手把手教你如何打造“用户愿意用、用得爽、用得对”的AI提示交互。传统提示工程关注“AI如何理解提示”,而提示设计的UX关注“用户如何与提示交互”——包括用户“看到提示时的理解成本”“输入过程中的引导清晰度”“获得反馈后的满足感”等全流程体验。差体验提示。
2025-09-13 14:10:02
471
原创 Hadoop与人工智能在大数据中的融合
公司希望通过推荐系统,提升用户的购买转化率(从当前的2%提升到3%)。某互联网公司要开发一个“图片搜索”功能,用户上传一张图片,系统能识别图片中的物体(比如“猫”“狗”“汽车”),然后返回相关的搜索结果。需要训练一个图像识别模型,需要100万张标注图片(每张图片标注了物体类别)。某零售公司要预测下一年的销售额,需要用过去5年的销售数据(包括每月销售额、促销活动、节假日、竞争对手的价格)。数据量约50GB(每年10GB)。Hadoop是大数据处理的“基础设施”,解决了“数据存哪里、怎么处理”的问题;
2025-09-13 12:32:51
788
原创 深度解析大数据领域数据湖的架构设计
数据湖是一个集中式存储系统Schema灵活性:支持Schema On Read,读取时根据需求解析数据结构;多模态数据支持:兼容结构化(数据库表)、半结构化(JSON、Parquet)、非结构化数据(图片、视频);低成本存储:基于对象存储(如AWS S3、Azure ADLS)或分布式文件系统(如HDFS),成本仅为数据仓库的1/10;开放性:支持标准API(如S3 API)和多计算引擎(Spark、Flink、Presto);全生命周期管理:从数据 ingest、存储、处理到销毁的端到端治理。
2025-09-13 10:55:40
606
原创 提示工程架构师实战:如何用LangChain优化复杂任务的提示生成过程?附教程
目的:解决复杂任务下传统提示生成的三大痛点——效率低:多步骤任务需要手动设计每个环节的提示,重复劳动多;一致性差:不同开发者设计的提示风格迥异,结果不可控;扩展性弱:难以整合外部工具(如数据库、API),无法处理需要实时信息的任务。范围:聚焦LangChain在"提示生成流程优化"中的应用,覆盖从核心概念到项目实战的全链路,适合需要提升LLM应用效率的开发者。核心概念:用生活类比解释提示工程、LangChain、Chain、Agent等关键术语;原理架构。
2025-09-13 09:23:38
779
原创 提示工程架构师分享:如何用提示词提升教育培训的案例教学?
OpenAI《提示工程指南》(官方文档,最权威);Coursera《Prompt Engineering for AI》(课程,适合入门);《提示工程实战》(书籍,包含大量案例)。ChatGPT(适合生成文本);Claude(适合处理长文本);豆包(适合中文场景)。
2025-09-13 02:59:49
561
原创 AI虚拟医疗:如何设计支持多租户的系统架构
疫情后,AI虚拟医疗成为医疗体系的“数字翅膀”——它能让基层诊所用上顶级专家的诊断模型,让医院降低IT成本,让患者随时随地获得医疗服务。但不同医院的需求千差万别:有的要中医问诊流程,有的要西医处方权限,有的对数据隐私要求极高(比如三甲医院),有的想低成本接入(比如社区卫生服务中心)。这时,多租户架构成了破局关键——它像“共享办公室”一样,让多个“租户”(医院、诊所)共享同一个AI虚拟医疗系统,却能保持各自的“独立空间”(数据、流程、配置)。本文将从背景需求核心概念技术设计实际落地未来趋势。
2025-09-13 01:22:47
348
原创 数据集成中的依赖管理:Airflow任务调度,解决复杂依赖关系
创建DAG文件:在Airflow的DAG目录下创建一个Python文件,例如。导入必要的模块:在文件开头导入airflow相关模块,如DAGTask等。定义DAG:使用DAG类定义一个工作流,设置DAG的名称、调度时间等参数。例如:定义任务:使用各种Operator(如PythonOperator、BashOperator等)定义具体的任务,并设置任务的执行函数、依赖关系等。例如:dag=dagdag=dag。
2025-09-12 23:50:41
702
原创 数据血缘图谱:大数据时代的导航系统
数据血缘图谱(Data Lineage)是现代数据治理体系中的关键组成部分,它记录了数据从产生到消费的全生命周期流转过程。本文旨在系统性地介绍数据血缘图谱的技术原理、实现方法和应用价值,涵盖从基础概念到企业级实践的完整知识体系。本文首先介绍数据血缘的基本概念和技术原理,然后深入探讨实现方法和数学模型,接着通过实际案例展示具体应用,最后讨论未来发展趋势。文章采用理论结合实践的方式,确保读者能够全面理解并应用这一技术。数据血缘(Data Lineage)
2025-09-12 22:18:37
519
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人