目录 1、数据集介绍 2、代码展示 3、代码获取 创新点1:结合时空卷积网络(TCN)与Transformer,TCN用于提取序列的全局空间特征,而Transformer用于捕捉序列的长期时序依赖,采用这种并行结构能够提升模型的训练和推理效率。 创新点2:采用交叉注意力并行网络融合时空特征,能有效整合时序与空间关系,进而更精准地捕获时空序列数据的复杂特征,从而提升预测的精度和模型的表现力。 1、数据集介绍 多特征输入,单特征输出 2、代码展示 ①特征重要性分析 ②训练图