二叉排序树(Binary Sort Tree):又称为二叉搜索树、二叉查找树,
二叉排序树可以是空树
也可以是满足如下性质的二叉树:
(1)若其左子树非空,则左子树上所有结点的值均小于根结点的值;
(2)若其右子树非空,则右子树上所有结点的值均大于等于根结点的值;
(3)其左右子树本身又各是一棵二叉排序树
下图就是一个二叉排序树,我们看左边,左子树均小于45,右边(右子树)均大于或等于45,分析左子树,12的左子树均小于12...其实也是递归的思想
二叉排序树的操作——查找
若查找的关键字等于根结点,成功
若小于根结点,查其左子树
若大于根结点,查其右子树
在左右子树上的操作类似
比如我们要查找105:105先与根122比较,小于122,查左子树,与左子树的根99比较,大于99,查99的右子树,102小于110,查110的左子树,找到啦!
二叉排序树的查找分析
二叉排序树上查找某关键字等于给定值的结点过程,其实就是走了一条从根到该结点的路径。
比较的关键字次数 = 此结点所在层次数
最多的比较次数 = 树的深度
二叉排序树的操作---插入
- 若二叉排序树为空,则插入结点作为根结点插入到空树中
- 否则,继续在其左、右子树上查找 - 树中已有,不再插入
- 树中没有,查找直至某个叶子结点的左子树或右子树为空为止,则插入结点应为该叶子结点的左孩子或右孩子
插入的元素一定在叶结点上
插入40的时候,40和根45比较,小于45,插入左子树,和12比较,大于12,插入12的右子树,和37比较,大于37,插入37的右子树,操作完成
插入50的时候,50和45比较,大于45,插入45的右子树,和53比较,小于53,插入53的左子树,操作完成
二叉排序树的操作 ---- 生成
一个无序序列可通过构造二叉排序树而变成一个有序序列。
构造树的过程就是对无序序列进行排序的过程。
插入的结点均为叶子结点,故无需移动其他结点。相当于在有序序列上插入记录而无需移动其他记录。 但是: 关键字的输入顺序不同,建立的不同二叉排序树。
二叉排序树的操作 --- 删除
从二叉排序树中删除一个结点,不能把以该结点为根的子树都删去,只能删掉该结点,并且还应保证删除后所得的二叉树仍然满足二叉排序树的性质不变。
由于中序遍历二叉排序树可以得到一个递增有序的序列。那么,在二叉排序树中删去一个结点相当于删去有序序列中的一个结点。
将因删除结点而断开的二叉链表重新链接起来,防止重新链接后树的高度增加
我们如果要把40删除,直接让30连着35即可
如果删除的是根节点,可以找它的唯一前驱或者唯一后继接上,50的唯一前驱是看他的左子树中最大的一个数,是40,那么将40作为根节点
也可以用唯一后继做根节点,删去原来的根节点50,唯一后继是找根节点的右子树中最小的数,是80,就把80作为根节点