Python + OpenCV – 提取和保存视频帧

Python + OpenCV – 提取和保存视频帧


阅读更多: OpenCV


引言

在计算机视觉、机器学习和图像处理应用中,从视频中处理图像帧是一个常见的任务。Python提供了一些强大的库和工具,使我们能够轻松地从视频中提取帧并对其进行处理。

百度百科: OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。


环境准备

使用 OpenCV 库从视频中提取特定帧并保存为图像文件,首先需要确保安装了必要的库。
注意🔔:OpenCV库为 opencv-python ,导入OpenCV语法为 import cv2

pip install opencv-python numpy matplotlib

代码实现

注意🔔:运行代码需通过命令行的方式

import cv2
import os
import argparse
from datetime import timedelta
from pathlib import Path


def extract_frames(video_path, output_dir, frame_interval=None, time_interval=None, prefix="frame"):
    """
    从视频中提取帧并保存到指定目录

    参数:
        video_path: 视频文件路径
        output_dir: 输出目录
        frame_interval: 帧间隔(每多少帧提取一帧)
        time_interval: 时间间隔(秒)
        prefix: 输出文件名前缀
    """

    # 检查视频文件
    if not os.path.isfile(video_path):
        print(f"错误: 视频文件 '{video_path}' 不存在")
        return

    # 创建输出目录 确保输出目录存在
    os.makedirs(output_dir, exist_ok=True)

    # 打开视频文件
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print(f"错误: 无法打开视频文件 {video_path}")
        return

    # 获取视频文件名(不含扩展名)作为默认前缀
    if prefix is None:
        video_name = Path(video_path).stem  # 例如: "input" from "input.mp4"
        prefix = video_name

    # 获取视频属性
    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    duration = frame_count / fps

    print(f"视频信息:")
    print(f"  视频路径: {video_path}")
    print(f"  帧率: {fps:.2f} fps")
    print(f"  总帧数: {frame_count}")
    print(f"  分辨率: {width}x{height}")
    print(f"  时长: {timedelta(seconds=duration)}")

    # 确定提取间隔
    if frame_interval is not None:
        interval = frame_interval
        use_frame_interval = True
        print(f"将每 {interval} 帧提取一帧")
    elif time_interval is not None:
        interval = max(1, int(time_interval * fps))  # 确保至少1帧
        use_frame_interval = True
        print(f"将每 {time_interval} 秒({interval}帧)提取一帧")
    else:
        interval = 1
        use_frame_interval = True
        print("将提取所有帧")

    # 开始提取帧
    frame_number = 0
    saved_count = 0

    print("\n开始提取帧...")

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        # 检查是否应该保存当前帧
        if use_frame_interval and frame_number % interval == 0:
            save_path = os.path.join(output_dir, f"{prefix}_{frame_number:06d}.jpg")
            cv2.imwrite(save_path, frame)
            saved_count += 1

        frame_number += 1

    cap.release()
    print(f"完成提取: 共处理 {frame_number} 帧,保存 {saved_count} 张到 {output_dir}")


def main():
    parser = argparse.ArgumentParser(description='从视频中提取帧并保存')
    parser.add_argument('--video_dir', help='视频所在目录(处理目录下所有视频)')
    parser.add_argument('--video_path', help='单个视频文件路径(与video_dir互斥)')
    parser.add_argument('--output_dir', help='输出目录')
    group = parser.add_mutually_exclusive_group()
    group.add_argument('--frame_interval', type=int, help='帧间隔(每多少帧提取一帧)')
    group.add_argument('--time_interval', type=float, help='时间间隔(秒)')
    parser.add_argument('--prefix', help='输出文件名前缀(默认为视频文件名)')
    parser.add_argument('--extensions', default='mp4,mkv,avi,mov', help='允许的视频扩展名,逗号分隔')

    args = parser.parse_args()

    # 验证输入参数
    if not args.video_dir and not args.video_path:
        parser.error("请指定 --video_dir 或 --video_path")

    # 获取视频文件列表
    video_files = []
    if args.video_dir:
        if not os.path.exists(args.video_dir):
            print(f"错误: 视频目录 {args.video_dir} 不存在")
            return

        allowed_extensions = set(args.extensions.lower().split(','))
        for entry in os.scandir(args.video_dir):
            if entry.is_file() and entry.name.lower().split('.')[-1] in allowed_extensions:
                video_files.append(entry.path)

        if not video_files:
            print(f"错误: 在目录 {args.video_dir} 中未找到支持的视频文件")
            return
    else:
        if not os.path.exists(args.video_path):
            print(f"错误: 视频文件 {args.video_path} 不存在")
            return
        video_files = [args.video_path]

    print(f"找到 {len(video_files)} 个视频文件需要处理")

    # 处理每个视频
    for video_path in video_files:
        video_name = Path(video_path).stem

        # 使用视频名作为默认前缀(除非用户指定了全局前缀)
        prefix = args.prefix if args.prefix else video_name

        extract_frames(
            video_path,
            args.output_dir,  # 直接使用用户指定的输出目录,不再创建子目录
            args.frame_interval,
            args.time_interval,
            prefix
        )

if __name__ == "__main__":
    main()


运行 命令行工具

你可以通过以下命令行方式运行这个视频帧提取程序。
程序支持两种模式:①单视频处理②批量处理目录中的所有视频

1 处理单个视频文件

bash 命令

python [代码名] --video_path 视频路径 --output_dir 输出目录 [其他参数]

示例:
提取 input.mp4 的帧,每秒提取一帧,保存到 frames/ 目录:

python frame.py --video_path input.mp4 --output_dir frames/ --time_interval 1.0
2 批量处理目录中的所有视频

bash 命令

python frame.py --video_dir 视频目录 --output_dir 输出目录 [其他参数]

示例:
处理 videos/ 目录下的所有视频(默认支持 mp4、mkv、avi、mov 格式),每 30 帧提取一帧,保存到 frames/ 目录:

python frame.py --video_dir videos/ --output_dir frames/ --frame_interval 30
完整帮助信息

查看所有可用参数:

python frame.py --help

结语

使用Python和OpenCV提取视频帧是一项强大而灵活的技术,适用于各种计算机视觉和多媒体处理任务。本文介绍的方法从基础到高级,覆盖了大多数实际应用场景。通过调整参数和结合其他Python库,您可以构建更复杂的视频处理流程。

希望本文对您的项目有所帮助!如果您有任何问题或改进建议,欢迎在评论区留言讨论。👋👋

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值