Python + OpenCV – 提取和保存视频帧
阅读更多: OpenCV
引言
在计算机视觉、机器学习和图像处理应用中,从视频中处理图像帧是一个常见的任务。Python提供了一些强大的库和工具,使我们能够轻松地从视频中提取帧并对其进行处理。
百度百科: OpenCV是一个基于Apache2.0许可(开源)发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
环境准备
使用 OpenCV 库从视频中提取特定帧并保存为图像文件,首先需要确保安装了必要的库。
注意🔔:OpenCV库为 opencv-python
,导入OpenCV语法为 import cv2
pip install opencv-python numpy matplotlib
代码实现
注意🔔:运行代码需通过命令行的方式
import cv2
import os
import argparse
from datetime import timedelta
from pathlib import Path
def extract_frames(video_path, output_dir, frame_interval=None, time_interval=None, prefix="frame"):
"""
从视频中提取帧并保存到指定目录
参数:
video_path: 视频文件路径
output_dir: 输出目录
frame_interval: 帧间隔(每多少帧提取一帧)
time_interval: 时间间隔(秒)
prefix: 输出文件名前缀
"""
# 检查视频文件
if not os.path.isfile(video_path):
print(f"错误: 视频文件 '{video_path}' 不存在")
return
# 创建输出目录 确保输出目录存在
os.makedirs(output_dir, exist_ok=True)
# 打开视频文件
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"错误: 无法打开视频文件 {video_path}")
return
# 获取视频文件名(不含扩展名)作为默认前缀
if prefix is None:
video_name = Path(video_path).stem # 例如: "input" from "input.mp4"
prefix = video_name
# 获取视频属性
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
duration = frame_count / fps
print(f"视频信息:")
print(f" 视频路径: {video_path}")
print(f" 帧率: {fps:.2f} fps")
print(f" 总帧数: {frame_count}")
print(f" 分辨率: {width}x{height}")
print(f" 时长: {timedelta(seconds=duration)}")
# 确定提取间隔
if frame_interval is not None:
interval = frame_interval
use_frame_interval = True
print(f"将每 {interval} 帧提取一帧")
elif time_interval is not None:
interval = max(1, int(time_interval * fps)) # 确保至少1帧
use_frame_interval = True
print(f"将每 {time_interval} 秒({interval}帧)提取一帧")
else:
interval = 1
use_frame_interval = True
print("将提取所有帧")
# 开始提取帧
frame_number = 0
saved_count = 0
print("\n开始提取帧...")
while True:
ret, frame = cap.read()
if not ret:
break
# 检查是否应该保存当前帧
if use_frame_interval and frame_number % interval == 0:
save_path = os.path.join(output_dir, f"{prefix}_{frame_number:06d}.jpg")
cv2.imwrite(save_path, frame)
saved_count += 1
frame_number += 1
cap.release()
print(f"完成提取: 共处理 {frame_number} 帧,保存 {saved_count} 张到 {output_dir}")
def main():
parser = argparse.ArgumentParser(description='从视频中提取帧并保存')
parser.add_argument('--video_dir', help='视频所在目录(处理目录下所有视频)')
parser.add_argument('--video_path', help='单个视频文件路径(与video_dir互斥)')
parser.add_argument('--output_dir', help='输出目录')
group = parser.add_mutually_exclusive_group()
group.add_argument('--frame_interval', type=int, help='帧间隔(每多少帧提取一帧)')
group.add_argument('--time_interval', type=float, help='时间间隔(秒)')
parser.add_argument('--prefix', help='输出文件名前缀(默认为视频文件名)')
parser.add_argument('--extensions', default='mp4,mkv,avi,mov', help='允许的视频扩展名,逗号分隔')
args = parser.parse_args()
# 验证输入参数
if not args.video_dir and not args.video_path:
parser.error("请指定 --video_dir 或 --video_path")
# 获取视频文件列表
video_files = []
if args.video_dir:
if not os.path.exists(args.video_dir):
print(f"错误: 视频目录 {args.video_dir} 不存在")
return
allowed_extensions = set(args.extensions.lower().split(','))
for entry in os.scandir(args.video_dir):
if entry.is_file() and entry.name.lower().split('.')[-1] in allowed_extensions:
video_files.append(entry.path)
if not video_files:
print(f"错误: 在目录 {args.video_dir} 中未找到支持的视频文件")
return
else:
if not os.path.exists(args.video_path):
print(f"错误: 视频文件 {args.video_path} 不存在")
return
video_files = [args.video_path]
print(f"找到 {len(video_files)} 个视频文件需要处理")
# 处理每个视频
for video_path in video_files:
video_name = Path(video_path).stem
# 使用视频名作为默认前缀(除非用户指定了全局前缀)
prefix = args.prefix if args.prefix else video_name
extract_frames(
video_path,
args.output_dir, # 直接使用用户指定的输出目录,不再创建子目录
args.frame_interval,
args.time_interval,
prefix
)
if __name__ == "__main__":
main()
运行 命令行工具
你可以通过以下命令行方式运行这个视频帧提取程序。
程序支持两种模式:①单视频处理和②批量处理目录中的所有视频。
1 处理单个视频文件
bash 命令
python [代码名] --video_path 视频路径 --output_dir 输出目录 [其他参数]
示例:
提取 input.mp4
的帧,每秒提取一帧,保存到 frames/
目录:
python frame.py --video_path input.mp4 --output_dir frames/ --time_interval 1.0
2 批量处理目录中的所有视频
bash 命令
python frame.py --video_dir 视频目录 --output_dir 输出目录 [其他参数]
示例:
处理 videos/
目录下的所有视频(默认支持 mp4、mkv、avi、mov 格式),每 30 帧提取一帧,保存到 frames/
目录:
python frame.py --video_dir videos/ --output_dir frames/ --frame_interval 30
完整帮助信息
查看所有可用参数:
python frame.py --help
结语
使用Python和OpenCV提取视频帧是一项强大而灵活的技术,适用于各种计算机视觉和多媒体处理任务。本文介绍的方法从基础到高级,覆盖了大多数实际应用场景。通过调整参数和结合其他Python库,您可以构建更复杂的视频处理流程。
希望本文对您的项目有所帮助!如果您有任何问题或改进建议,欢迎在评论区留言讨论。👋👋