
MuJoCo 仿真与控制教程
文章平均质量分 90
MuJoCo 仿真与控制教程
具身智能与人形机器人
目前在苏州魔法原子,有问题请在评论区留言
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MuJoCo Playground 机器人强化学习入门教程(一)
MuJoCo Playground 包含 DM 控制套件、机器人运动和机器人操作环境。env每个环境还与一个环境配置相关联,如果需要,可以覆盖该配置。env_cfg请注意,环境配置包含 sim_dt 和 ctrl_dt。ctrl_dt 决定每个 env.step 的时间间隔。因此,每个 env.step 的模拟步长为 ctrl_dt / sim_dt 倍。其他值得注意的参数还有 vision_config,我们将在基于视觉的笔记本中详细讨论!现在,我们将专注于特权观察。原创 2025-03-01 06:00:00 · 3079 阅读 · 0 评论 -
MuJoCo Playground 机器人强化学习入门教程(四)
import osimport jaxMadrona MJX 是 Mujoco 与 Madrona 合作开发的实验性设备上渲染后端。它实现了与 JAX 兼容的批量渲染器,可并行推出多个培训环境。渲染瓶颈在强化学习(Reinforcement Learning)中,一个代理使用一个策略来产生一个动作 x,以响应对模拟状态 x 的观察。环境通过奖励信号 x 对互动进行评估,然后过渡到呈现为 x 的下一个状态。这就形成了过渡 x,即强化学习训练管道的基本数据单元。原创 2025-03-26 07:00:00 · 1301 阅读 · 0 评论 -
MuJoCo XLA (MJX) 强化学习人形机器人四足机器人入门教程(三)
MJX 是用 JAX 编写的 MuJoCo 实现,可以在 GPU/TPU 上进行大批量训练。在本笔记本中,我们将演示如何使用 MJX 训练 RL 策略。在开始大量 RL 工作负载之前,我们先从一个简单的示例开始!xml = """"""接下来,我们使用 MJX 将 MuJoCo 模型和数据放到 GPU 设备上。下面,我们将打印来自 MuJoCo 和 MJX 的 qpos。原创 2025-03-26 07:00:00 · 1440 阅读 · 0 评论 -
MuJoCo Playground 入门教程(二)强化学习训练宇树四足机器人 Go1 Locomotion
在本笔记本中,我们将介绍 MuJoCo Playground 中的几种运动环境。需要使用带有 GPU 加速功能的 Colab 运行时。如果使用的是纯 CPU 运行时,可以通过菜单 “运行时 > 更改运行时类型 ”进行切换。原创 2025-03-23 07:00:00 · 1323 阅读 · 0 评论