20、概念/人物之间的共指消解探索

概念/人物之间的共指消解探索

共指消解是人类语言中的一种基本机制,它使两个句子能够指向同一事物。这在人类交流中非常重要,其作用类似于编程语言中的变量名,但范围的定义规则与编程块有很大不同。在商业领域,共指消解的重要性相对较低,不过随着技术发展,其应用前景也在逐渐扩大。例如,“Alice walked into the garden. She was surprised.” 中,“Alice” 和 “She” 存在共指关系,它们指代同一事物。当我们开始思考不同文档中的 “Alice” 是否为同一人时,共指消解就变得更加有趣和具有挑战性。

文档内命名实体共指消解

LingPipe 可以使用多种技术识别对应于人物、地点、事物、基因等的专有名词。然而,仅仅进行分块处理并不足以完成共指消解任务,因为它无法确定两个命名实体是否指代同一事物。能够识别 “John Smith” 与 “Mr. Smith”、“John” 甚至重复的 “John Smith” 为同一实体是非常有用的。基于此,产生了基于实体的摘要方法,即生成按实体索引的句子,这是一种很好的总结关于该实体描述的方式,尤其在跨语言映射时更为有效。

这个方法的灵感来源于 Baldwin 在宾夕法尼亚大学研究生研讨会上的一次演讲。当时的系主任 Mitch Marcus 认为,展示所有提及某个实体(包括代词)的句子将是对该实体的一个很好的总结。从某种意义上说,这一观点促成了 LingPipe 的诞生,进而引发了 Baldwin 领导的宾夕法尼亚大学 DARPA 项目以及 Alias - i 的创建。这也告诉我们,要与他人分享自己的想法和研究。

下面我们来了解计算共指消解的基础知识:
- 准备工作

内容概要:该论文探讨了一种基于粒子群优化(PSO)的STAR-RIS辅助NOMA无线通信网络优化方法。STAR-RIS作为一种新型可重构智能表面,能同时反射和传输信号,与传统仅能反射的RIS不同。结合NOMA技术,STAR-RIS可以提升覆盖范围、用户容量和频谱效率。针对STAR-RIS元素众多导致获取完整信道状态信息(CSI)开销大的问题,作者提出一种在不依赖完整CSI的情况下,联合优化功率分配、基站波束成形以及STAR-RIS的传输和反射波束成形向量的方法,以最大化总可实现速率并确保每个用户的最低速率要求。仿真结果显示,该方案优于STAR-RIS辅助的OMA系统。 适合人群:具备一定无线通信理论基础、对智能反射面技术和非正交多址接入技术感兴趣的科研人员和工程师。 使用场景及目标:①适用于希望深入了解STAR-RIS与NOMA结合的研究者;②为解决无线通信中频谱资源紧张、提高系统性能提供新的思路和技术手段;③帮助理解PSO算法在无线通信优化问题中的应用。 其他说明:文中提供了详细的Python代码实现,涵盖系统参数设置、信道建模、速率计算、目标函数定义、约束条件设定、主优化函数设计及结果可视化等环节,便于读者理解和复现实验结果。此外,文章还对比了PSO与其他优化算法(如DDPG)的区别,强调了PSO在不需要显式CSI估计方面的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值