MultiNet: 一种用于生物特征验证的多模态方法
1. 引言
在现代社会、政治和法律体系中,实时识别个人身份在许多场景下都至关重要,如移民、跨境或访问计算机软件系统等。以往的身份验证方法主要有基于令牌(如护照、身份证)和基于知识(如PIN码、密码)两种,但这些方法存在易被盗用、遗忘或伪造的问题。为克服这些局限,生物识别技术应运而生。
生物识别是通过人的身体特征来识别个体的方法,主要分为生理特征识别(如面部、虹膜、指纹等)和行为特征识别(如签名、步态、键盘动态等)。它在医疗系统、机场安检、社交网络、云计算和国土安全等众多领域都有广泛应用,数十亿智能手机用户也会使用指纹或面部识别来解锁手机。
然而,随着对人类身份验证要求的提高,单模态生物识别系统往往难以取得令人满意的结果,甚至可能导致欺诈性访问。为了提供更可靠的身份验证,多模态生物识别认证方法被提出。如果一个生物识别系统使用至少两种生物特征,则被称为多模态生物识别系统,该系统通过融合不同的生物特征,能提供更高的验证率。本文研究采用了分数级融合的方法。
1.1 生物识别综述
当今社会欺诈和犯罪活动的增加,使得现有的身份验证系统面临诸多质疑。早期系统依赖用户记忆密码和PIN码来证明身份,但用户在记忆这些信息时面临挑战。为此,研究人员提出了基于行为和生理特征的生物识别方法。生物识别利用人的独特属性(如面部、虹膜、指纹等)来识别个体,无需用户记忆密码,且生物特征不易丢失、被盗或转移,提供了更好的安全性。
生物识别系统通常包含以下四个步骤:
1. 图像采集 :获取生物特征图像并提交给系统进行后续处理。
2.