动态调度方法综述
1. 元启发式算法
元启发式算法在解决调度问题中发挥着重要作用,下面介绍几种常见的元启发式算法。
1.1 遗传算法(Genetic Algorithm,GA)
- 原理与表示 :基于GA的方法在调度问题的解决方案中占很大比例。其原因在于GA的解表示与组合优化的排列性质相契合。对于流水车间调度问题(FSP)和作业车间调度问题(JSP),解是类似字符串的染色体,元素(基因)的顺序指定作业或操作的顺序。对于柔性车间调度,常见的表示方法有:A - B字符串表示,其中两个字符串分别指定机器分配和操作顺序;基于排列的表示,在矩阵染色体中严格指定操作和机器的对应关系;操作顺序和机器选择(OOMS)表示,将作业优先级和二进制机器选择组件组合到一个染色体中。搜索过程本质上是染色体之间部分的交换(交叉)或元素的随机修改(变异),无需数值运算。
- 应用与发展 :基于GA的调度进展已应用于动态环境中的鲁棒主动调度,如双目标柔性流水车间调度问题(FFSP)、JSP、线性组合多目标柔性作业车间调度问题(FJSP)等。GA还与局部搜索方法结合以提高效率,如GA与一般局部搜索、GA与禁忌搜索(TS)。近期研究聚焦于复杂调度环境,其中存在随机处理时间和不可预见的干扰,如动态作业到达和机器故障。在此环境中,调度器需频繁修改调度,因此采用混合调度算法进行调度和重新调度。例如,Liu等人开发了一种主动 - 反应式架构,将量子遗传算法(QGA)、粒子群优化(PSO)、量子启发式迭代贪婪(QIG)和模拟退火(SA)与NSGA - II算法结合,用于解决多目标随机动态FSP。Li和Gao提出了一种