目录链接:
力扣编程题-解法汇总_分享+记录-CSDN博客
GitHub同步刷题项目:
https://github.com/September26/java-algorithms
原题链接:
力扣
描述:
给出一棵二叉树,其上每个结点的值都是 0 或 1 。每一条从根到叶的路径都代表一个从最高有效位开始的二进制数。
例如,如果路径为 0 -> 1 -> 1 -> 0 -> 1,那么它表示二进制数 01101,也就是 13 。
对树上的每一片叶子,我们都要找出从根到该叶子的路径所表示的数字。
返回这些数字之和。题目数据保证答案是一个 32 位 整数。
示例 1:
输入:root = [1,0,1,0,1,0,1]
输出:22
解释:(100) + (101) + (110) + (111) = 4 + 5 + 6 + 7 = 22
示例 2:
输入:root = [0]
输出:0
提示:
树中的节点数在 [1, 1000] 范围内
Node.val 仅为 0 或 1
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/sum-of-root-to-leaf-binary-numbers
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路:
* 解题思路: * 递归遍历所有节点。每次遍历节点时,接受根结点传递过来的累加值,然后加上当前值求出当前节点的值。 * 如果节点是叶子节点,则计算SUM值。 * 如果不是,则传递当前节点的值并递归。
代码:
public class Solution1022 {
int sum = 0;
public int sumRootToLeaf(TreeNode root) {
ergodic(root, 0);
return sum;
}
private void ergodic(TreeNode root, int i) {
int current = (i << 1) + root.val;
if (root.right == null && root.left == null) {
sum += current;
return;
}
if (root.left != null) {
ergodic(root.left, current);
}
if (root.right != null) {
ergodic(root.right, current);
}
}
}