​力扣解法汇总1022-从根到叶的二进制数之和

 目录链接:

力扣编程题-解法汇总_分享+记录-CSDN博客

GitHub同步刷题项目:

https://github.com/September26/java-algorithms

原题链接:

力扣


描述:

给出一棵二叉树,其上每个结点的值都是 0 或 1 。每一条从根到叶的路径都代表一个从最高有效位开始的二进制数。

例如,如果路径为 0 -> 1 -> 1 -> 0 -> 1,那么它表示二进制数 01101,也就是 13 。
对树上的每一片叶子,我们都要找出从根到该叶子的路径所表示的数字。

返回这些数字之和。题目数据保证答案是一个 32 位 整数。

示例 1:


输入:root = [1,0,1,0,1,0,1]
输出:22
解释:(100) + (101) + (110) + (111) = 4 + 5 + 6 + 7 = 22
示例 2:

输入:root = [0]
输出:0
 

提示:

树中的节点数在 [1, 1000] 范围内
Node.val 仅为 0 或 1 

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/sum-of-root-to-leaf-binary-numbers
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路:

* 解题思路:
* 递归遍历所有节点。每次遍历节点时,接受根结点传递过来的累加值,然后加上当前值求出当前节点的值。
* 如果节点是叶子节点,则计算SUM值。
* 如果不是,则传递当前节点的值并递归。

代码:

public class Solution1022 {
    int sum = 0;
    public int sumRootToLeaf(TreeNode root) {
        ergodic(root, 0);
        return sum;
    }

    private void ergodic(TreeNode root, int i) {
        int current = (i << 1) + root.val;
        if (root.right == null && root.left == null) {
            sum += current;
            return;
        }
        if (root.left != null) {
            ergodic(root.left, current);
        }
        if (root.right != null) {
            ergodic(root.right, current);
        }
    }
}

力扣四数之和的问题是一个经典的编程挑战,目标是找出数组中是否存在四个元素,它们的和恰好等于给定的目标值。这个问题可以用多种Python解决方案,包括但不限于: 1. **哈希表法**(两指针法): 使用两个指针i和j遍历数组,同时记录当前和s,将每次遇到的元素a[i]加到s中,并检查是否能在剩余元素中找到一对(a[j], target-s)。可以使用字典或集合来存储已经遇到过的和,如果找到匹配则返回。 2. **排序法**: 先对数组进行排序,然后使用双指针技术,一个指向数组开始,一个指向结束,计算两个指针之间的元素差的绝对值,看是否有三个数的组合等于目标值减去这个差。 3. **暴力搜索法**: 遍历所有可能的四元组,计算每个四元组的和,如果等于目标值就找到了。但这是一种时间复杂度较高的解决方案,通常不适合大规模数据。 以下是哈希表法的一个简单示例: ```python def fourSum(nums, target): nums.sort() n = len(nums) res = [] if n < 4: return [] seen = {0} for i in range(n - 3): val = nums[i] if val in seen: j = i + 1 while j < n and nums[j] == val: j += 1 complement = target - (val * 4) if complement >= val: seen = {complement} | seen else: break complement = target - val seen.add(val) left, right = j, n - 1 while left < right: curr_sum = nums[left] + nums[right] if curr_sum == complement: res.append([nums[i], nums[j], nums[left], nums[right]]) while left < right and nums[left] == nums[left + 1]: left += 1 while left < right and nums[right] == nums[right - 1]: right -= 1 left += 1 right -= 1 elif curr_sum < complement: left += 1 else: right -= 1 return res ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失落夏天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值