Tensorflow Day1

本文介绍了如何在PyCharm中配置Tensorflow环境,遇到的版本兼容问题,如1.13.0与1.16.1的numpy不匹配,以及如何构建和运行计算图的实例。重点讲解了如何解决版本冲突和创建矩阵乘法计算图的操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.如何在pycharm中配置Tensorflow环境

File -> settings -> project -> interpreter 选择解释器,并且可以看到解释器所包含的库,添加新库即可。

2.Tensorflow版本与numpy不兼容的问题

本次使用的Tensorflow是1.13.0,numpy是1.16.1的,最新版的numpy是1.21.1的,版本太高,无法与Tensorflow适配,故选择numpy,先下numpy也可以,或者先把numpy删掉再下载低版本的也可以。

3.如何构建一个计算图

import tensorflow as tf

x = tf.constant([[1.0,2.0]])
w = tf.constant([[3.0],[4.0]])

y = tf.matmul(x,w)

print y

其中,外面的[]代表一个矩阵,[[2.0],[3.0]]代表一个矩阵中有两行,每行中有一个元素,[[2.0,3.0]]就代表一个矩阵,这个矩阵中只有一行,且这一行有两个元素。

y = tf.matmul(x,w)就是线代中的矩阵乘元素,即n*m 与 m*s的两个矩阵相乘,但y并不是运算结果,而只是一种计算图,通俗来讲,计算图就是表明了运算规则,即一个小模型,而没有运算,要想运算,则可以使用:

with tf.Session() as sess:
    print sess.run(y)

即可得到运算结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值