3.26 Tensorflow 实验记录

本文通过实验探讨了在深度学习模型中参数(w1,w2)的作用。实验表明,无论初始参数如何设置,在训练足够多代后,损失率会趋于相同。进一步分析了在不同任务下参数如何调整以逼近真实值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验1:

在一个简单的 仅有前向传播与反向传播的过程中,我们发现,无论前向传播的参数(w1,w2)是多少,再训练足够多代之后,都会通过后向传播得到相同的损失率。

实验1.1:

 实验1.2:

 

 通过两个实验我们可以发现,在改变w1,w2后,仅会使第一代的损失率不同,而在训练有限代之后,都会使最终的损失率相同。

实验2:

        实验2主要是针对在Tensorflow深度学习模型中对参数(w1,w2)作用的探讨:

实验2.1:

        在这个实验中,我们设一组数据是x1,x2,y_label: 当x1 + x2 < 0为1 否则为0

实验2.2:

        在这个实验中,我们设一组数据是x1,x2,y_label = x1 + x2

实验过程:在实验2.2的实验中,参数仅有w[2,1],最后我们发现经过训练过程,w11,w12

都最终趋向于1,也就是y = x1 * w11 + x2 * w12 越来越趋向于现实值y_label。

结论:

        参数的作用就是通过前向传播的矩阵运算与后向传播的迭代优化,找到由实际数据推出未来结果的公式。

        还有一个问题其实也容易看出来,在实验2.2中,y与y_label都是float32的,但是实验2.1的并不是,其y_label是非0即1的,但是预测值y却并不是非0即1的,也就是该模型建立起来之后应该会有两个结果,即结果一是围绕0的,结果二是围绕1的。

        另外值得注意的是通过random_normal制造出来的随机数是介于-1 - 1的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值