在讲述可持久化线段树之前,大家需要先知道线段树是什么,如果还有不知道线段树的小伙伴可以看下我之前写的关于线段树的模板,在这附上博客地址:(63条消息) 线段树模板_AC__dream的博客-CSDN博客
我们知道线段树支持修改和查询操作,假如我们现在要对某个历史版本的线段树进行操作,我们应该如何达到目的呢?最简单粗暴的方法就是对于每一次修改操作,我们都将原来的线段树先复制一份,再在新建立的线段树上进行操作,这样我们就可以对之前的任何一个版本的线段树进行操作,但是这样显然是不可取的,无论是时间复杂度上还是空间复杂度上,这样做的代价都太高了。比如说我们要对第一个节点进行修改,则线段树上的哪些节点会发生改变呢?是不是叶子节点1到根节点连线上的所有节点会发生改变,而除了这些节点以外的其他节点都不会发生改变,那我们现在就应该想,能不能只创建一条支链并复用之前的线段树上的其他支链从而形成一棵新的线段树,我们只在新生成的那条链上进行操作,这样就会大大增加空间的利用率。
可持久化线段树随着操作会增加新的分支,所以我们没办法通过父节点乘以二得到子节点编号。这也是可持久化线段树与普通线段树的最大区别。
下面我就模板说一下详细的实现步骤。
注意下面的模板是不涉及到区间更新的,如果设计到区间更新则需要lazy标记。
建树:
void build(int id,int L,int R)
{
l[id]=L;r[id]=R;sum[id]=0;
if(L==R)
{
sum[id]=a[L];
return ;
}
int mid=L+R>>1;
//可持久化线段树的左右子节点无法通过乘2直接得到,每次都需要新开节点
ln[id]=++idx;rn[id]=++idx;
build(ln[id],L,mid);
build(rn[id],mid+1,R);
pushup(id);
}
单点更新:
//pre代表旧版本的线段树,id代表当前版本的线段树
void update_point(int pre,int id,int pos,int val)
{
//由旧版本对新版本进行赋值
rn[id]=rn[pre];ln[id]=ln[pre];l[id]=l[pre];r[id]=r[pre],sum[id]=sum[pre];
if(l[id]==r[id])
{
sum[id]=val;
return ;
}
int mid=l[id]+r[id]>>1;
//如果需要更新的点位于左孩子上,我们就可以重用右孩子,新建左孩子
if(pos<=mid) ln[id]=++idx,update_point(ln[pre],ln[id],pos,val);
//如果需要更新的点位于右孩子上,我们就可以重用左孩子,新建右孩子
else rn[id]=++idx,update_point(rn[pre],rn[id],pos,val);
pushup(id);
}
单点询问:
//单点询问与普通线段树一样,我们只需要传入我们当前想要查询的线段树版本即可
int query_point(int id,int x)
{
if(l[id]==r[id]) return sum[id];
int mid=l[id]+r[id]>>1;
if(x<=mid) return query_point(ln[id],x);
else return query_point(rn[id],x);
}
区间查询:
//我们要查询l~r上的线段树,我们就需要用r版本和l-1版本的线段树相减即可
int query_interval(int pre,int id,int L,int R)
{
//新旧版本线段树相减即可得到在l~r上进行操作的线段树
if(l[id]>=L&&r[id]<=R) return sum[id]-sum[pre];
int mid=l[id]+r[id]>>1;
int ans=0;
if(L<=mid) ans+=query_interval(ln[pre],ln[id],L,R);
if(mid+1<=R) ans+=query_interval(rn[pre],rn[id],L,R);
return ans;
}
下面给出两个模板题:
(单点修改+单点查询)题目链接:P3919 【模板】可持久化线段树 1(可持久化数组) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
using namespace std;
const int M=1000010,N=3e7+10;
int l[N],r[N],ln[N],rn[N],a[M],root[M];
int sum[N],idx;
//可持久化线段树与普通线段树最大的不同就是普通线段树可以通过父节点乘二得到子节点
void pushup(int id)
{
sum[id]=sum[ln[id]]+sum[rn[id]];
}
void build(int id,int L,int R)
{
l[id]=L;r[id]=R;sum[id]=0;
if(L==R)
{
sum[id]=a[L];
return ;
}
int mid=L+R>>1;
//可持久化线段树的左右子节点无法通过乘2直接得到,每次都需要新开节点
ln[id]=++idx;rn[id]=++idx;
build(ln[id],L,mid);
build(rn[id],mid+1,R);
pushup(id);
}
//pre代表旧版本的线段树,id代表当前版本的线段树
void update_point(int pre,int id,int pos,int val)
{
//由旧版本对新版本进行赋值
rn[id]=rn[pre];ln[id]=ln[pre];l[id]=l[pre];r[id]=r[pre],sum[id]=sum[pre];
if(l[id]==r[id])
{
sum[id]=val;
return ;
}
int mid=l[id]+r[id]>>1;
if(pos<=mid) ln[id]=++idx,update_point(ln[pre],ln[id],pos,val);
else rn[id]=++idx,update_point(rn[pre],rn[id],pos,val);
pushup(id);
}
//单点询问与普通线段树一样,我们只需要传入我们当前想要查询的线段树版本即可
int query_point(int id,int x)
{
if(l[id]==r[id]) return sum[id];
int mid=l[id]+r[id]>>1;
if(x<=mid) return query_point(ln[id],x);
else return query_point(rn[id],x);
}
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
root[0]=++idx;
build(root[0],1,n);
int t,op,loc,val;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&t,&op);
if(op==1)
{
scanf("%d%d",&loc,&val);
root[i]=++idx;
update_point(root[t],root[i],loc,val);
}
else
{
scanf("%d",&loc);
printf("%d\n",query_point(root[t],loc));
root[i]=root[t];
}
}
return 0;
}
(单点更新+区间查询)题目链接:P3834 【模板】可持久化线段树 2 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
const int N=2e7+10;
int a[N],l[N],r[N],sum[N],ln[N],rn[N],idx,root[N];
vector<int> alls;
void pushup(int id)
{
sum[id]=sum[ln[id]]+sum[rn[id]];
}
void build(int id,int L,int R)
{
l[id]=L;r[id]=R;sum[id]=0;
if(l[id]==r[id]) return ;
int mid=L+R>>1;
ln[id]=++idx;rn[id]=++idx;
build(ln[id],L,mid);
build(rn[id],mid+1,R);
pushup(id);
}
void update_point(int pre,int id,int pos,int val)
{
l[id]=l[pre];r[id]=r[pre];ln[id]=ln[pre];rn[id]=rn[pre];sum[id]=sum[pre];
if(l[id]==r[id])
{
sum[id]+=val;
return ;
}
int mid=l[id]+r[id]>>1;
if(pos<=mid) ln[id]=++idx,update_point(ln[pre],ln[id],pos,val);
else rn[id]=++idx,update_point(rn[pre],rn[id],pos,val);
pushup(id);
return ;
}
//我们要查询l~r上的线段树,我们就需要用r版本和l-1版本的线段树相减即可
int query_interval(int pre,int id,int L,int R)
{
if(l[id]>=L&&r[id]<=R) return sum[id]-sum[pre];
int mid=l[id]+r[id]>>1;
int ans=0;
if(L<=mid) ans+=query_interval(ln[pre],ln[id],L,R);
if(mid+1<=R) ans+=query_interval(rn[pre],rn[id],L,R);
return ans;
}
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
alls.push_back(a[i]);
}
sort(alls.begin(),alls.end());
alls.erase(unique(alls.begin(),alls.end()),alls.end());
for(int i=1;i<=n;i++) a[i]=lower_bound(alls.begin(),alls.end(),a[i])-alls.begin()+1;
root[0]=++idx;
build(root[0],1,alls.size());
for(int i=1;i<=n;i++)
{
root[i]=++idx;
update_point(root[i-1],root[i],a[i],1);
}
int lans,rans,k;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&lans,&rans,&k);
int ll=0,rr=alls.size();
while(ll<rr)
{
int mid=ll+rr+1>>1;
if(query_interval(root[lans-1],root[rans],1,mid)<k) ll=mid;
else rr=mid-1;
}
printf("%d\n",alls[ll]);
}
return 0;
}
下面给出主席树的两点说明:
第一个:如果一开始树是空的,我们并没有必要真的去建立一棵空树,我们直接从第一棵树开始建立即可,这样可以节省建树的空间和时间,这点还是有必要记住的
第二个:由于主席树对空间的要求比较严格,所以建议把当前区间的做右端点作为参数写入函数而不是直接新开l和r数组来单独存储区间的端点
第三个:主席树的空间一般开所给数据的20倍
第四个:为了方便找取主席树的版本,建议直接开一个root数组记录每一个版本线段树的根节点所对的编号
这篇博客中的可持久化线段树操作是不涉及到区间更新的,在之后的博客中我将会单独写一篇博客来介绍一下关于可持久化线段树中的区间修改。