如何使用OpenCV Python找到图像的傅里叶变换?

离散傅里叶变换(DFT)和逆离散傅里叶变换(IDFT)可用于图像上的频域分析。要找到图像的傅立叶变换,我们使用函数 cv2.dft() 和 cv2.idft() 。我们可以应用傅里叶变换来分析各种滤波器的频率特性。

步骤

要找到输入图像的傅里叶变换,可以按照以下步骤进行 –

  • 导入必需的库。在以下所有Python示例中,所需的Python库为 OpenCV,Numpy 和 Matplotlib。 请确保您已经安装了它们。
  • 使用 cv2.imread() 方法将输入图像加载为灰度图像。还将灰度图像的类型转换为 float32 。

  • 使用 cv2.dft() 在图像上找到离散傅里叶变换。

  • 调用 np.fft.fftshift() 将零频率分量移动到频谱的中心。

  • 应用对数变换并可视化幅度谱。

  • 为了可视化转换后的图像,我们应用反向变换 np.fft.ifftshift() 和 cv2.idft() 。请参见下面讨论的第二个示例。

让我们看一些示例,以便更清楚地理解问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值