点击蓝字
关注我们
AI TIME欢迎每一位AI爱好者的加入!
社交媒体虚假新闻的广泛传播已经在政治、经济、健康等领域带来了严重危害。现有的检测方法往往选择推近观察(“zoom in”),通过捕捉特定行文模式、基于知识库验证内容真实性、考虑用户评论,对给定新闻的真实性做出判断。
这些方法忽略了假新闻创作和传播时所处的新闻环境中蕴含的信息:为了提高影响力和破坏力,假新闻往往存在“蹭热点”倾向,这使得新闻环境反映的近期主流的媒体焦点和群众关切,成为了假新闻创作中的重要参考。
例如,2月1日中国男足1-3负于越南男足后,网上立刻流传起“击败国足的越南足球队队长在农贸市场卖虾谋生”的不实信息。
基于上述思考,我们认为拉远焦点(“zoom out”),观察给定新闻与其所在新闻环境的关系,可以为假新闻检测提供全新的视角。
本文提出新闻环境感知框架,通过在宏观环境中观察给定新闻的流行度,在微观环境中观察其新颖度,捕捉有用信息用于假新闻检测。据我们所了解,这是首个考虑新闻环境信息的假新闻检测工作。
本期AI TIME PhD直播间,我们邀请到中国科学院计算技术研究所数字内容合成与伪造检测实验室博士生——盛强,为我们带来报告分享《假新闻检测:观察新闻本身,更要观察它所在的新闻环境》。
盛强:
中国科学院计算技术研究所数字内容合成与伪造检测实验室博士生,导师为曹娟研究员。主要研究方向为面向社交媒体数据的虚假新闻检测与事实核查。
01
背景
本研究中,我们首次将环境信息引入了虚假新闻检测之中。互联网上,广泛流传的虚假新闻已经影响到了现实中人们的生活。
现有的虚假新闻检测方法大概可以分为两个流派,其中一种是基于信息中的相关语义信号来判断其是否与其他新闻不同,好处在于可以立即检测,缺点在于可依赖的信息量只有这条网络帖子本身。为了获得更多有效信息,大多数研究者选择凭借外部信息的帮助,推近观察(“zoom in”)帖子的内容。这种方法大致分为两类:一类挖掘帖子所引发的社交上下文信息,另一类依靠外部的知识资源。
基于社交上下文的方法经常考虑从用户反馈(如评论、转发)中寻找线索,因为用户基于自身知识可能会发现帖子的异常描述,从而帮助区分