DeepSeek的价值不仅在于对话能力,更在于它所承载的生态体系。由API调用、接入渠道、插件与第三方应用共同构建的生态网络,正在快速延伸到从个人学习、团队协作到企业服务的各个层面。
本章(即第二章)将带领读者全面了解DeepSeek的生态组成,包括API的使用方法、主流接入渠道、常用插件以及第三方应用,帮助您建立系统化的认识,高效地使用这些工具。
2.1.1 API调用的方法
在DeepSeek模型生态中,API是最常用的DeepSeek调用方式。
DeepSeek API是DeepSeek提供的应用程序编程接口(Application Programming Interface),以RESTful架构开放模型能力,允许开发者通过代码调用的方式,将DeepSeek的核心功能无缝集成到第三方应用、服务或系统中。使用DeepSeek API可以实现功能扩展、定制开发和多平台集成,实现各种高级应用。
创建API key
1. 登录API开放平台。访问DeepSeek官网,点击“API开放平台”,进入API开放平台的控制台,如图2-1所示。初次使用需要注册并验证开发者信息,充值购买Tokens。
图2-1:DeepSeek API开放平台的控制台
2. 创建DeepSeek API密钥。在左侧边栏点击“API Keys”创建API密钥,点击“复制”按键复制生成的API key“sk-******”,如图2-2所示。
注意:
(1)DeepSeek API采用按需付费(以“百万tokens”为单位)。Token是模型用来表示自然语言文本的的最小单位,可以是一个词、一个数字或一个标点符号等。
(2)API key是一组加密数字,仅在创建时可见可复制。
(3)API Key是重要的数字资产,请勿以任何方式公开,以免安全风险或资金损失。
图2-2:创建DeepSeek API Key
首次调用API
DeepSeek API使用与OpenAI兼容的API格式。DeepSeek API中重要字段的使用规则如下,更多参数的设置请参见【DeepSeek API文档】。
api_key='sk-*************************'
base_url='https://api.DeepSeek.com/v1'
model='DeepSeek-chat' #DeepSeek-V3模型
model='DeepSeek-reasoner' #DeepSeek-R1模型
在创建API密钥之后,你可以使用以下例程来访问DeepSeek API。其中,要将例程中的“sk-******”替换为用户自己的API key。
# Please install OpenAI SDK first: `pip3 install openai`
from openai import OpenAI
client = OpenAI(api_key= "sk-******", base_url="https://api.DeepSeek.com")
response = client.chat.completions.create(
model="DeepSeek-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"},
],
stream=False
)
print(response.choices[0].message.content)
使用PyCharm软件调试与运行例程,结果如图2-3所示。
图2-3:调用DeepSeek API例程的运行结果
注意:
(1)运行本例程前要先安装第三方库openai。
(2)请将例程中api_key的值替换为用户创建的DeepSeek API key。
本例以python语言示例调用DeepSeek API,也可以使用其它语言编程。没有编程基础的读者也完全不用担心,接下来我们将介绍使用一些平台或工具免编程应用DeepSeek API。
2.1.2 安全使用API key
安全使用API Key
把API Key配置到环境变量,可以避免在代码里显式地配置API Key,降低泄漏风险。
在Windows系统中,可以通过系统属性、CMD或PowerShell配置环境变量。对于iOS系统或Linux系统,可以参见附录。
1. 在Windows系统中按Win+Q键,搜索“编辑系统环境变量”,打开系统属性窗口。
2. 在系统属性窗口,单击“环境变量”,然后在系统变量区域下方单击“新建”按钮,弹出新建系统变量窗口。
3. 在新建系统变量窗口中,“变量名”填入MY_API_KEY,“变量值”填入用户创建的API Key,如图2-4所示。点击“确定”按钮关闭系统属性配置页面,完成环境变量配置。
4. 打开CMD命令行窗口或Windows PowerShell窗口,输入“echo $MY_API_KEY$”查询命令,检查环境变量是否生效。
图2-4:将API Key配置到环境变量
把API Key配置到环境变量之后,就可以在例程中用环境变量MY_API_KEY代替显式的API Key,以降低密钥泄漏的风险。
# Please install OpenAI SDK first: `pip3 install openai`
import os
from openai import OpenAI
# 若没有配置环境变量,请用API Key将下行替换为:api_key="sk-xxx",
my_api_key = os.getenv("MY_API_KEY")
print(my_api_key)
client = OpenAI(api_key=my_api_key, base_url="https://api.DeepSeek.com")
response = client.chat.completions.create(
model="DeepSeek-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"},
],
stream=False
)
print(response.choices[0].message.content)
2.1.3 API的参数设置
DeepSeek API提供了丰富的参数设置,允许开发者灵活调整模型生成内容的行为。
参数详解
参数名 | 类型 | 说明 | 示例 |
---|---|---|---|
model | string | 指定模型版本(如DeepSeek-chat 或 DeepSeek-coder)。 | "DeepSeek-chat" |
messages | array | 由role与content交替组成的对话历史。 | [{"role": "user", "content": "你好"}] |
temperature | float | 控制随机性(0=严谨,1=创意)。 | 0.7 |
max_tokens | integer | 最终回答的最大长度(不含思维链输出) | 2048 |
top_p | float | 核采样概率(0.1~1.0),仅考虑概率最高的top_p部分词。 | 0.9 |
stream | boolean | 流式输出,用于逐步返回长文本。 | false |
frequency_penalty | float | 抑制重复用词(0=不抑制,1=强抑制)。 | 0.5 |
presence_penalty | float | 鼓励新话题引入(0=不鼓励,1=强鼓励)。 | 0.3 |
stop | array | 指定终止序列(遇到这些词时停止生成)。 | ["\n", "。"] |
推荐设置
开发者根据不同的使用场景,可以通过设置适当的参数来调整模型生成内容。
1. temperature与top_p的选择。
保守精准(代码/事实类):temperature=0.3 + top_p=0.5
创意写作(故事/对话):temperature=0.8 + top_p=0.9
平衡模式(常规问答):temperature=0.7 + top_p=0.8
2. 控制回答长度。
缩短回答:max_tokens=300
长文生成:max_tokens=1024 或 stream=True(流式加载)
3. 避免重复。
presence_penalty=0.5(减少重复主题)
frequency_penalty=0.5(降低高频词)
附录:
阿里云官方文档-大模型服务平台-API参考-配置API Key到环境变量
往期回顾: