LeetCode.1035.不相交的线

题目描述:

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:

  •  nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数

输入输出实例:

思路:不难发现其实这道题目就是让我们找nums1和nums2两个列表的最长公共子序列的长度,那么我们可以用动态规划的方法:令m,n分别为nums1和nums2的列表长度,定义一个dp二维数组(m+1)*(n+1),初始化dp[i][j]=0,我们找最长公共子序列的长度有以下公式:

如果nums1[i-1]=nums2[j-1],那么更新dp[i][j] =dp[i-1][j-1] + 1

如果nums[i-1]!=nums2[j-1],那么dp[i][j] = 二位列表dp[i-1][j]和dp[i][j-1]中较大的那个(左方和上方更大的元素当作这个值)

这样我们的dp[i][j]即可表示nums1的前i个元素和nums2的前j个元素的最长公共子序列长度。根据上述思路有以下代码:

class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        m, n = len(nums1), len(nums2)
        # 初始化 DP 表
        dp = [[0] * (n + 1) for _ in range(m + 1)]
    
        # 填充 DP 表
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if nums1[i - 1] == nums2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                else:
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
    
        return dp[m][n]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值