ValueError: Classification metrics can‘t handle a mix of binary and continuous targets

本文探讨了在使用sklearn库进行决策树分类后,遇到的ValueError:无法处理二进制和连续目标的混淆。通过修改代码将目标变量类型从float转换为int,解决了分类报告和混淆矩阵的输出问题。博主寻求理解并欢迎读者分享经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


先给解决方法:

原先的代码:

f.values.astype(float)
X = f.iloc[:,:-1]
y = f.iloc[:,-1]
#此处省略部分代码
from sklearn import metrics
print(metrics.classification_report(y,predict_y))
print('Confusion matrix:\n',metrics.confusion_matrix(y,predict_y))

修改后:

 #单纯删去了原先语句的第一行,并修改第三行
X = f.iloc[:,:-1]
y = f.iloc[:,-1].values.astype(int)   #astpye设置为float也可行

如上修改后就成功出现了想要的结果:
备注:使用源代码的话,不管是调用函数metrics.classification_report还是metrics.confusion_matrix都会报错
在这里插入图片描述

现在给报错背景:

在训练完决策树分类器后,想看一下分类性能报告和混淆矩阵,结果报错ValueError: Classification metrics can‘t handle a mix of binary and continuous targets

原因探索:

参考sklearn官网关于函数metrics.classification_report的说明:

sklearn.metrics.confusion_matrix(y_true,y_pred,*,labels=None,sample_weight=None,normalize=None)
y_true:array-like of shape (n_samples,)
y_pred:array-like of shape (n_samples,)

xs探索了个寂寞出来
如果有大佬知道为什么采用原语句会报错的话,欢迎在评论区留言,万分感谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值