tensorflow int4 yolov5

该文介绍了一个使用TensorFlow库对预训练的YOLOv5s模型进行量化优化的过程。通过定义特定卷积层的量化比例和推理准确率损失阈值,计算每个卷积层的乘法次数,然后根据设定的比例决定各层的量化位数(4-bit,8-bit或32-bit)。在保证一定推理准确率的前提下,对模型进行量化以减少计算资源需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述

import tensorflow as tf
import tensorflow_model_optimization as tfmot

# 加载预训练模型
model = tf.keras.models.load_model("yolov5s.h5")

# 定义要量化的卷积层名称和量化比例
quantize_layers = ['conv2d_36', 'conv2d_39', 'conv2d_42']
quantize_ratios = [0.8, 0.5, 0.2] # 对应每个卷积层的量化比例

# 定义要评估的推理准确率损失阈值
accuracy_losses = [0.02, 0.05, 0.1]

# 针对每个推理准确率损失阈值进行量化模拟
for accuracy_loss in accuracy_losses:
    # 计算每个卷积层的乘法次数
    total_muls = 0
    layer_muls = {}
    for layer in model.layers:
        if layer.name in quantize_layers:
            layer_muls[layer.name] = tf.reduce_prod(layer.output_shape[1:])*layer.kernel_size[0]*layer.kernel_size[1]*layer.input_shape[-1]
            total_muls += layer_muls[layer.name]

    # 根据卷积层的乘法次数比例确定是否将该层量化为 INT4 类型
    for layer_name, layer_mul in layer_muls.items():
        ratio = layer_mul/total_muls
        if ratio >= quantize_ratios[0]:
            num_bits = 4
        elif ratio >= quantize_ratios[1]:
            num_bits = 8
        else:
            num_bits = 32

        # 对当前卷积层进行 INT4 量化
        if num_bits == 4:
            print(f"Quantizing layer {layer_name} with {num_bits}-bit quantization...")
            layer = model.get_layer(layer_name)
            quantize_config = tfmot.quantization.keras.QuantizeConfig(
                weight_bits=4,
                activation_bits=4,
                force_input_quantization=True,
                force_output_quantization=True)
            quantized_layer = tfmot.quantization.keras.quantize_annotate_layer(layer, quantize_config)
            model.get_layer(layer_name).set_weights(quantized_layer.get_weights())

    # 对量化后的模型进行评估
    quantized_model = tf.keras.models.clone_model(model)
    quantized_model.set_weights(model.get_weights())
    quantized_model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
    _, quantized_accuracy = quantized_model.evaluate(x_test, y_test, verbose=0)

    # 打印当前推理准确率损失和量化信息
    accuracy_loss_percent = (1 - quantized_accuracy)*100
    print(f"Inference accuracy loss: {accuracy_loss_percent:.2f}%")
    print(f"Quantization ratio: {ratio:.2f}")
    print("="*80

在这里插入图片描述

<think>好的,我需要帮助用户配置YOLOv5以使用CSI摄像头作为输入源。根据用户提供的引用,特别是引用[2]和[4],Jetson Nano通常使用GStreamer管道来处理CSI摄像头的数据。首先,用户需要确认他们的摄像头连接正确,并且系统已经安装了相关驱动。接下来,修改YOLOv5的detect.py文件,替换默认的USB摄像头代码为CSI摄像头专用的GStreamer管道。这可能涉及修改OpenCV的VideoCapture初始化部分,使用GStreamer参数。此外,用户需要确保他们的环境已经安装了必要的库,如gstreamer和相应的Python绑定。如果遇到问题,可能需要重新编译或安装缺失的依赖,如引用[3]提到的删除build文件夹重新安装。最后,测试修改后的代码以确保摄像头能够正确捕获视频流并进行推理。可能还需要调整分辨率和帧率参数以适应CSI摄像头的规格。</think>### 配置YOLOv5使用CSI摄像头的步骤 1. **硬件连接与驱动检查** - 确认CSI摄像头正确插入Jetson Nano的CSI接口,并检查系统是否识别设备: ```bash ls /dev/video* ``` - 安装CSI摄像头基础依赖库: ```bash sudo apt-get install gstreamer1.0-tools libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev ``` 2. **修改YOLOv5的摄像头输入模块** - 在`detect.py`中找到摄像头初始化部分,替换为CSI专用GStreamer管道: ```python # 原USB摄像头代码(注释或删除) # cap = cv2.VideoCapture(0) # CSI摄像头配置(MIPI接口,适用于Jetson Nano) def gstreamer_pipeline( sensor_id=0, capture_width=1280, capture_height=720, display_width=1280, display_height=720, framerate=30, flip_method=0, ): return ( "nvarguscamerasrc sensor-id=%d ! " "video/x-raw(memory:NVMM), width=(int)%d, height=(int)%d, framerate=(fraction)%d/1 ! " "nvvidconv flip-method=%d ! " "video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! " "videoconvert ! " "video/x-raw, format=(string)BGR ! appsink" % ( sensor_id, capture_width, capture_height, framerate, flip_method, display_width, display_height, ) ) cap = cv2.VideoCapture(gstreamer_pipeline(), cv2.CAP_GSTREAMER) ``` [^2][^4] 3. **环境适配与调试** - 若出现`cv2.CAP_GSTREAMER`不支持的错误,需重新编译OpenCV并启用GStreamer支持: ```bash # 在Jetson Nano上重新配置OpenCV(需提前安装CUDA和cuDNN) cmake -D WITH_GSTREAMER=ON .. make -j4 sudo make install ``` - 测试摄像头能否正常打开: ```python if not cap.isOpened(): print("CSI摄像头初始化失败") exit() ``` 4. **调整推理参数** - 根据CSI摄像头的分辨率(如720P/1080P),修改`imgsz`参数以匹配实际输入尺寸: ```python parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=720, help='inference size (pixels)') ``` 5. **运行与验证** - 执行检测命令: ```bash python detect.py --source 0 --weights yolov5s.pt --conf 0.25 ``` - 若出现帧率低的问题,可降低分辨率或减少模型复杂度(如改用YOLOv5s模型)。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值