文章目录
引言
Apache Kafka 是一个分布式流处理平台,由LinkedIn开发,后成为Apache软件基金会下的一个顶级项目。它主要用于构建实时数据管道和流应用程序。Kafka 以其高吞吐量、可扩展性、持久性和容错性而闻名,被广泛应用于日志收集、消息系统、用户行为追踪、实时数据分析等领域。
官网链接
Kafka 原理
核心概念
- Broker:Kafka 集群中的一个或多个服务器,用于存储消息。
- Topic:消息的分类,生产者向特定主题发送消息,消费者从特定主题订阅消息。
- Partition:Topic 的物理分区,每个Partition 是一个有序的、不可变的消息序列,可以分布在多个Broker上。
- Producer:消息生产者,负责向Kafka集群发送消息。
- Consumer:消息消费者,从Kafka集群订阅并消费消息。
- Consumer Group:消费者组,同一个组内的消费者共同消费一个Topic的不同分区,实现负载均衡和容错。
工作原理
Kafka 通过分区和副本机制实现高吞吐量和数据可靠性。生产者发送消息到指定的Topic,Kafka根据分区规则(如轮询、随机、基于key的哈希等)将消息分配到不同的Partition中。每个Partition有多个副本,以提高数据的可用性和容错性。消费者通过订阅Topic并从其分配的Partition中读取消息来消费数据。
基础使用
安装与启动
- 下载Kafka并解压。
- 配置
server.properties
(如设置broker.id、listeners等)。 - 启动ZooKeeper(Kafka依赖ZooKeeper进行集群管理)。
- 启动Kafka Server。
生产者示例
使用Kafka自带的命令行工具发送消息:
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
> Hello Kafka
消费者示例
使用Kafka自带的命令行工具消费消息:
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning
高级使用
Kafka Streams
Kafka Streams 是一个用于构建实时流处理应用程序的客户端库,它允许开发者以声明式的方式处理Kafka中的数据流。
示例:单词计数
import org.apache.kafka.streams