Pytorch基础 - 6. torch.reshape() 和 torch.view()

本文详细介绍了PyTorch中torch.reshape()和torch.view()函数的使用,包括它们在处理连续性和非连续性tensor时的区别。讨论了contiguous的概念,并指出view()在处理非连续tensor时需要先调用contiguous(),而reshape()则可以直接操作。同时提到了影响tensor连续性的函数,如transpose()、permute()等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. torch.reshape(shape) 和 torch.view(shape)函数用法

2. 当处理的tensor是连续性的(contiguous)

3. 当处理的tensor是非连续性的(contiguous)

4. PyTorch中的contiguous


在本文开始之前,需要了解最基础的Tensor存储方式,具体见 Tensor数据类型与存储结构

注:如果不想继续往下看,就无脑使用reshape()函数来进行tensor处理!!

1. torch.reshape(shape) 和 torch.view(shape)函数用法

torch.reshape() 和 torch.view()不会修改tensor内部的值,只是对tensor的形状进行变化,里面只包含了shape的参数,shape为当前tensor改变后的形状

示例:将x改变成shape为[2,3] 和 [3,2]的方式,reshape和view均可 

x = torch.tensor([1, 2, 3, 4, 5, 6])
y1 = x.reshape(2, 3)
y2 = x.view(3, 2)
print(y1.shape, y2.shape)   # torch.Size([2, 3]) torch.Size([3, 2])
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值