在金融交易或量化分析系统中,最基础也是最重要的环节就是 行情数据的可视化。
一张能实时更新的 K 线图,不仅帮助交易员快速捕捉市场波动,也为策略回测、指标叠加提供了可扩展的基础。
相比普通图表库,Highcharts Stock 专门针对时间序列和交易场景做了优化,支持大规模数据渲染、区间缩放、实时推送等功能。
本文将分享如何通过标准化的数据接口,让行情图表与真实市场保持“同频”。
一、Highcharts Stock 对数据的基本要求
在交易场景中,常见的数据类型有 K 线(OHLC)、成交量、分时曲线。Highcharts Stock 对输入数据格式有以下规范:
-
时间戳
-
必须使用 Unix 时间戳(毫秒),保证数据的时序性。
-
-
K 线数据(Candlestick / OHLC)
[ [1625097600000, 3500, 3520, 3480, 3510], // 时间, 开, 高, 低, 收 [1625184000000, 3510, 3550, 3490, 3540] ]
-
成交量数据(Volume)
与 K 线时间戳对齐:[ [1625097600000, 120000], [1625184000000, 95000] ]
二、接口设计:历史加载 + 实时推送
在实际交易系统中,行情数据来源一般分为 历史数据批量加载 和 实时行情推送:
-
历史数据(REST API)
前端启动时,通过 REST 接口一次性拉取一段时间的历史 K 线和成交量。fetch('/api/kline?symbol=000001&range=1d') .then(res => res.json()) .then(data => chart.series[0].setData(data));
-
实时数据(WebSocket)
对于逐笔或分时行情,推荐 WebSocket 推送。前端接收后调用:socket.onmessage = function (msg) { const point = JSON.parse(msg.data); chart.series[0].addPoint(point, true, true); };
这种方式能保证图表低延迟更新,同时避免全量刷新。
三、完整示例:K 线图 + 成交量
Highcharts.stockChart('container', { rangeSelector: { selected: 1 }, title: { text: '上证指数 K 线图' }, yAxis: [{ labels: { align: 'right', x: -3 }, title: { text: '价格' }, height: '70%', lineWidth: 2 }, { labels: { align: 'right', x: -3 }, title: { text: '成交量' }, top: '75%', height: '25%', offset: 0, lineWidth: 2 }], series: [{ type: 'candlestick', name: '上证指数', data: ohlcData, // OHLC 格式数据 id: 'sz' }, { type: 'column', name: '成交量', data: volumeData, // 成交量数据 yAxis: 1 }] });
效果:价格和成交量通过多轴叠加,用户可自由缩放时间区间,实现与行情终端类似的交互体验。
四、实践小结
通过以上接口规范与对接方式,您可以快速构建一个 动态行情可视化模块:
-
历史数据通过 REST API 一次性加载
-
实时行情通过 WebSocket 推送增量更新
-
图表支持缩放、拖拽、跨轴显示,实现专业交易体验
这为后续的 指标叠加 和 回测对接 打下了坚实的基础。