聚类算法介绍、K-means聚类的实现与衍生算法、密度聚类

Kmeans算法

介绍

  • 给定一个有M个对象的数据集,构建一个具有K个簇的模型,其中k<=M。满足:
    • 每个簇至少包含一个对象
    • 每个对象属于且仅属于一个簇
    • 将满足上述条件的K个簇称为一个合理的聚类划分
  • 基本思想:对于给定的类别数目k,首先给定初始划分,通过迭代改变样本和簇的隶属关系,使得每次处理后得到的划分方式比上一次的好(总的数据集之间的距离和变小了)

算法理论

假设输入样本为T=x1,x2,...,xmT=x_1,x_2,...,x_mT=x1,x2,...,xm;则算法步骤为(使用欧氏距离):

  • 随机选择样本初始化的k个聚类中心,a1,a2,...,aka_1,a_2,...,a_ka1,a2,...,ak
  • 对于每个样本xix_{i}xi,将其标记为距离类别中心aja_{j}aj最近的类别 jjj
  • labeli=arg⁡min⁡1<j<k{ ∑i=1n(xi−aj)2}l a b e l_{i}=\underset{1<j<k}{\arg \min }\{\sqrt{\sum_{i=1}^{n}\left(x_{i}-a_{j}\right)^{2}}\}labeli=1<j<kargmin{ i=1n(xiaj)2 }
  • 更新每个类别的中心点aja_{j}aj为隶属该类别的所有样本的均值
    μi=1∣Ci∣∑x∈Cix\mu_{i}=\frac{1}{|C_i|} \sum_{x \in C_i} xμi=Ci1xCix
  • 重复上述两步操作,知道达到某个终止条件
  • 终止条件:
    • 迭代次数
    • 最小平方误差MSE
    • 簇中心点变化率

例子

对数据集{ (1,2),(2,2),(6,8),(7,8)}\{(1,2),(2,2),(6,8),(7,8) \}{ (1,2),(2,2),(6,8),(7,8)}聚成2类

  1. 随机选取聚类中心C={ (1,2),(2,2)}C=\{(1,2),(2,2)\}C={ (1,2),(2,2)}
  2. 分别计算样本点到每个中心点的欧式距离
  3. 对距离从小到大进行排序,将样本点进行归类
  4. 各类使用样本均值更新样本中心点
  5. 重复2、3、4
  6. 当聚类中心不再变化时,停止迭代,完成聚类
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import copy
import sklearn.datasets as ds
import matplotlib.colors
from sklearn.cluster import KMeans,DBSCAN,AgglomerativeClustering
import scipy.cluster.hierarchy as sch
# v测量,轮廓系数
from sklearn.metrics import v_measure_score, silhouette_score

plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = 'False'

def example1():
    X = np.array([[1, 2], [2, 2], [6, 8], [7, 8]])
    # 初始聚类中心
    C = np.array<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梚枫_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值