数据分析-Pandas如何概况的获得统计数据
时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。此处选择巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。
某属性的聚合统计
比如求某列的平均值,Titanic 数据中,想知道乘客的平均年龄多少:
In [1]: titanic["Age"].mean()
Out[1]: 29.69911764705882
多列的聚合计算
比如求好几个属性的平均值,可以同时应用到多列的数值处理中,计算过程中会把缺失的数据排除掉,生成的结果默认按行表达。选择 年龄和费用计算其的平均值。
In [2]: titanic[["Age", "Fare"]].median()
Out[2]:
Age 28.0000
Fare 14.4542
dtype: