摆脱肥宅,从我做起—day03

本文深入探讨PyTorch框架的使用技巧,包括tensor操作、自动梯度计算及网络参数获取。总结了各类卷积技术,如转置卷积、空洞卷积和深度可分离卷积的特性与应用场景,以及Python编程中的一些实用知识点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python自学小记录02
一、pytorch易忘点
1、tensor的创建function可以被查看,requires_grad=true跟踪tensor所有操作

2、调用 .backward()来自动计算所有梯度,该张量的梯度将累积到 .grad 属性中。
若求导tensor是一元(标量),则 .backward()不需参数;
否则, .backward()里要指定一个和待求导的tensor一样规模的tensor做参数。
net.parameters()可获得网络的各层权重。

3、疑惑:net.zero_grad() # zeroes the gradient buffers of all parameters
梯度是累加的,所以每次迭代更新前要清零?

4、totchvision 的包,该包含有支持加载类似Imagenet,CIFAR10,MNIST 等公共数据集的数据加载模块 torchvision.datasets 和支持加载图像数据数据转换模块 torch.utils.data.DataLoade。

二、各种卷积总结推文小记
1、卷积的积分定义,一个函数和它的反转再位移后的函数相交的面积
2、卷积和互相关的区别在互相关没有反转
3、感觉转置卷积就是,把小的feature map扩大,但保持相似的pattern关系。用来对像素分类。
4、为了用上计算机的矩阵运算,filter变稀疏矩阵,img拉伸成列向量。用有规律的稀疏零等价了卷积filter的滑动。
5、已经有空洞卷积结合多尺度卷积,还有加上attention的
6、深度可分离卷积虽然能减少参数加快训练,但对于小模型而言,可能会降低性能。
7、分组卷积能在多个GPU上同时运行。

三、python易忘点
1、
在函数的参数中经常可以看到-1例如x.view(-1, 4)
这里-1表示一个不确定的数,就是你如果不确定你想要reshape成几行,但是你很肯定要reshape成4列,那不确定的地方就可以写成-1
例如一个长度的16向量x,
x.view(-1, 4)等价于x.view(4, 4)
x.view(-1, 2)等价于x.view(8,2)
2、itertools
迭代累加/找符合某条件数
在这里插入图片描述
排列组合
在这里插入图片描述
3、两个set的&是选两者共有
在这里插入图片描述
4、匿名函数使用lambda
在这里插入图片描述
5、定义一个class里的__init__函数是前后各两个下划线!
6、class里每个函数都要有self参数,即使调用无参数
在这里插入图片描述
7、被继承者放在继承类的括号里
(孙子即使没有显式定义某方法,只要其祖先定义过,孙子就可以调用)
在这里插入图片描述
8、重载
在这里插入图片描述
9、super()可调用被重载的父类
在这里插入图片描述

内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值