CDO 必读|NoETL 自动化指标平台是企业数据体系的必备新基建

提到指标平台,很多企业将其定位为指标的管理工具,用于解决指标沉淀和口径统一管理的问题。指标管理固然重要,但如果“管、研”不能合体,指标管理平台既不改进指标的生产效率,也不能改善生产关系,指标开发、管理和消费链条中的各种深层次问题无法得到有效根治。

本文尝试从企业数据平台决策者的视角,阐释集“管、研、用”于一体的 NoETL 自动化指标平台作为数据团队的生产工具、管理工具和业务团队的效率工具,应被视作企业数据体系整体架构中必备的一环。

一、CDO 之痛#

作为企业数据平台的一号位,CDO 面临的核心挑战主要在以下几个方面:

1. 业务满意度挑战

数字化进入深水区,企业的数据使用场景从固定看板阶段进入数智化运营阶段,从管理层的宏观决策到业务一线的日常运营都深度依赖数据分析。用数需求多,变化频繁,“一事一议”的数据开发方式下,需求沟通环节耗时久且易产生信息失真,数据开发环节又包含一系列复杂的技术流程。而指标口径被锁定在需求表达和物理报表中,事前难统一,事后难治理。

需求方的体感是需求响应周期长,影响快速决策和运营策略的快速迭代;分析维度和粒度固化,很多探索性分析无法灵活开展,发现问题又难以快速下钻归因;指标口径不透明不统一,数据的可信度存疑

2. CEO 满意度挑战

近十年来,大数据建设如火如荼地开展,很多数字化先行企业都建设了数据中台。然而近一两年来,数据中台的 ROI 被频繁质疑。Gartner 在 2024 年的分析报告(注释1)中指出,“纯技术驱动的‘大而全’的数据与分析平台(如数据中台)无法确保切实的商业回报,从而失去了利益相关者的支持。”

数据中台以数据仓库技术与生态工具为基础,其运作的基本前提是数据的物理集成,其最核心的工程方法论是 ETL。这套体系前期投入大,建设周期长,开发与运维成本高,而收益难以量化。数据平台部门最经常被 CEO 质疑的问题是,如何量化数据平台和数据团队的业务价值?如何通过数据指导业务降本增收?叠加业务部门的质疑,可谓雪上加霜。

3. 团队价值感挑战

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值