Fourier积分
Author : Benjamin142857
Date : 2018/10/2
[TOC]
Fourier 积分定理
若 f(t)f(t)f(t) 在 (−∞,∞)(-\infty, \infty)(−∞,∞) 上满足下列条件:
- 在任意有限区间上满足Dirichlet条件(一) :连续或只有有限个第一类间断点;
- 在任意有限区间上满足Dirichlet条件(二) :只有有限个极值点
- f(t)f(t)f(t) 在 (−∞,∞)(-\infty, \infty)(−∞,∞) 上绝对可积(即 ∫−∞∞∣f(t)∣dt\int_{-\infty}^{\infty}|f(t)|dt∫−∞∞∣f(t)∣dt 收敛)
则有:
f(t)=12π∫−∞∞[∫−∞∞f(τ)e−jωτdτ]ejωtdω f(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty}f(\tau)e^{-j\omega\tau}d\tau\right]e^{j\omega t}d\omega f(t)=2π1∫−∞∞[∫−∞∞f(τ)e−jωτdτ]ej