资产定价核心等式及其应用

本文深入探讨了资产定价的核心公式p=E(mx),从Consumption-based model出发,详细阐述了定价方程的推导及边际替代率、随机贴现因子的概念。此外,文章通过该公式介绍了金融中的经典问题,如无风险利率、风险调整、异质性风险对价格的影响,以及均值-方差前沿、股权溢价之谜等,并讨论了长期收益率的可预测性与现值表示方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

接触过资产定价的同学可能知道,资产定价有一个核心公式p=E(mx)p=\text{E}(mx)p=E(mx),它的内涵十分丰富。本文将从Consumption-based model出发,详解该公式的由来,并以它为视角,介绍金融理论中的一些问题。

1 定价方程

1.1 基本的定价方程

假设有一笔在t+1t+1t+1时刻的payoff为xt+1x_{t+1}xt+1的资产,该如何计算它在ttt时刻的价值?

假如在今天买一只股票,那么下一期的payoff就是股票的价格加股息,即xt+1=pt+1+dt+1x_{t+1}=p_{t+1}+d_{t+1}xt+1=pt+1+dt+1xt+1x_{t+1}xt+1是一个随机变量,投资者无法确切地知道他的投资在下一期会有多少收益,但他可以估算各种可能情况的概率。假设有一个代表性投资者,他的效用函数是
U(ct,ct+1)=u(ct)+βEt[u(ct+1)] U(c_{t},c_{t+1})=u(c_t)+\beta \text{E}_t[u(c_{t+1})] U(ct,ct+1)=u(ct)+βEt[u(ct+1)]

其中ctc_tct表示在ttt期的消费。假设效用函数是幂效用函数
u(ct)=11−γct1−γ u(c_t)=\dfrac{1}{1-\gamma}c_t^{1-\gamma} u(ct)=1γ1ct1γ

γ→1\gamma\to 1γ1时,u(c)=ln⁡(c)u(c)=\ln(c)u(c)=ln(c)β\betaβ是主观贴现因子(subjective discount factor),效用函数的曲率表示对风险和跨期替代的厌恶程度。

假设投资者可以以ptp_tpt的价格自由买卖任意数量的资产xt+1x_{t+1}xt+1,初始消费水平为eee,他选择买入ξ\xiξ数量的资产,那么可列出方程:
max⁡{ ξ}u(ct)+Et[βu(ct+1)]s.t.ct=et−ptξ,ct+1=et+1+xt+1ξ \begin{aligned} \max_{\{\xi\}} u(c_t)&+\text{E}_t[\beta u(c_{t+1})] \\ \text{s.t.} \quad c_t&=e_t-p_t\xi,\\ c_{t+1}&=e_{t+1}+x_{t+1}\xi \end{aligned} { ξ}maxu(ct)s.t.ctct+1+Et[βu(ct+1)]=etptξ,=et+1+xt+1ξ

将约束条件代入后求解最值问题,解得:
ptu′(ct)=Et[βu′(ct+1)xt+1] p_t u'(c_t)=\text{E}_t\left[\beta u'(c_{t+1})x_{t+1}\right] ptu(ct)=Et[βu(ct+1)xt+1]

上式可写为:
pt=Et[βu′(ct+1)u′(ct)xt+1](1) p_t=\text{E}_t\left[\beta \dfrac{u'(c_{t+1})}{u'(c_t)}x_{t+1}\right] \tag{1} pt=Et[βu(ct)u(ct+1)xt+1](1)

1.2 边际替代率与随机贴现因子

定义随机贴现因子(Stochastic Discount Factor,SDF
mt+1=βu′(ct+1)u′(ct) m_{t+1}=\beta \dfrac{u'(c_{t+1})}{u'(c_t)} mt+1=βu(ct)u(ct+1)

代入(1)(1)(1)式可得pt=Et(mt+1xt+1)p_t=\text{E}_t(m_{t+1}x_{t+1})pt=Et(mt+1xt+1)。这里的mt+1m_{t+1}mt+1可以叫作边际替代率(marginal rate of substitution),也叫定价核(pricing kernel),或者测度变换(change of measure)、状态价格密度(state-price density)等。在大多数时候,下标可以省略,条件期望和无条件期望也没必要区分,可以写作p=E(mx)p=\text{E}(mx)p=E(mx)

如果不存在不确定因素,那么按照标准现值公式,应该有
pt=1Rfxt+1 p_t=\dfrac{1}{R_f} x_{t+1} pt=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值