接触过资产定价的同学可能知道,资产定价有一个核心公式p=E(mx)p=\text{E}(mx)p=E(mx),它的内涵十分丰富。本文将从Consumption-based model出发,详解该公式的由来,并以它为视角,介绍金融理论中的一些问题。
1 定价方程
1.1 基本的定价方程
假设有一笔在t+1t+1t+1时刻的payoff为xt+1x_{t+1}xt+1的资产,该如何计算它在ttt时刻的价值?
假如在今天买一只股票,那么下一期的payoff就是股票的价格加股息,即xt+1=pt+1+dt+1x_{t+1}=p_{t+1}+d_{t+1}xt+1=pt+1+dt+1,xt+1x_{t+1}xt+1是一个随机变量,投资者无法确切地知道他的投资在下一期会有多少收益,但他可以估算各种可能情况的概率。假设有一个代表性投资者,他的效用函数是
U(ct,ct+1)=u(ct)+βEt[u(ct+1)] U(c_{t},c_{t+1})=u(c_t)+\beta \text{E}_t[u(c_{t+1})] U(ct,ct+1)=u(ct)+βEt[u(ct+1)]
其中ctc_tct表示在ttt期的消费。假设效用函数是幂效用函数
u(ct)=11−γct1−γ u(c_t)=\dfrac{1}{1-\gamma}c_t^{1-\gamma} u(ct)=1−γ1ct1−γ
当γ→1\gamma\to 1γ→1时,u(c)=ln(c)u(c)=\ln(c)u(c)=ln(c)。β\betaβ是主观贴现因子(subjective discount factor),效用函数的曲率表示对风险和跨期替代的厌恶程度。
假设投资者可以以ptp_tpt的价格自由买卖任意数量的资产xt+1x_{t+1}xt+1,初始消费水平为eee,他选择买入ξ\xiξ数量的资产,那么可列出方程:
max{
ξ}u(ct)+Et[βu(ct+1)]s.t.ct=et−ptξ,ct+1=et+1+xt+1ξ \begin{aligned} \max_{\{\xi\}} u(c_t)&+\text{E}_t[\beta u(c_{t+1})] \\ \text{s.t.} \quad c_t&=e_t-p_t\xi,\\ c_{t+1}&=e_{t+1}+x_{t+1}\xi \end{aligned} {
ξ}maxu(ct)s.t.ctct+1+Et[βu(ct+1)]=et−ptξ,=et+1+xt+1ξ
将约束条件代入后求解最值问题,解得:
ptu′(ct)=Et[βu′(ct+1)xt+1] p_t u'(c_t)=\text{E}_t\left[\beta u'(c_{t+1})x_{t+1}\right] ptu′(ct)=Et[βu′(ct+1)xt+1]
上式可写为:
pt=Et[βu′(ct+1)u′(ct)xt+1](1) p_t=\text{E}_t\left[\beta \dfrac{u'(c_{t+1})}{u'(c_t)}x_{t+1}\right] \tag{1} pt=Et[βu′(ct)u′(ct+1)xt+1](1)
1.2 边际替代率与随机贴现因子
定义随机贴现因子(Stochastic Discount Factor,SDF)
mt+1=βu′(ct+1)u′(ct) m_{t+1}=\beta \dfrac{u'(c_{t+1})}{u'(c_t)} mt+1=βu′(ct)u′(ct+1)
代入(1)(1)(1)式可得pt=Et(mt+1xt+1)p_t=\text{E}_t(m_{t+1}x_{t+1})pt=Et(mt+1xt+1)。这里的mt+1m_{t+1}mt+1可以叫作边际替代率(marginal rate of substitution),也叫定价核(pricing kernel),或者测度变换(change of measure)、状态价格密度(state-price density)等。在大多数时候,下标可以省略,条件期望和无条件期望也没必要区分,可以写作p=E(mx)p=\text{E}(mx)p=E(mx)。
如果不存在不确定因素,那么按照标准现值公式,应该有
pt=1Rfxt+1 p_t=\dfrac{1}{R_f} x_{t+1} pt=