几乎必然收敛的含义

本文探讨了概率论中的几乎必然收敛概念,包括其定义、等价条件和与Borel-Cantelli引理的关系。几乎必然收敛意味着随机变量序列在概率1下趋向于某个极限,这涉及到对序列极限行为的深入理解。Borel-Cantelli引理提供了判断几乎必然收敛的工具,特别是对于独立事件序列的发散和收敛性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 几乎必然收敛的概念

几乎必然收敛(almost sure convergence),又叫以概率1收敛(convergence with probability 1),定义为:随机变量序列{Xn}\{X_n\}{Xn}满足
P(lim⁡n→∞Xn→X)=1 \mathbf{P}(\lim_{n\to \infty} X_n\to X)=1 P(nlimXnX)=1
Xn→a. s. XX_n\xrightarrow{\text{a. s. }}XXna. s. X

它的等价条件有很多,比如:
P(lim⁡n→∞∣Xn−X∣<ε)=1 \mathbf{P}(\lim_{n\to \infty} |X_n-X|<\varepsilon)=1 P(nlimXnX<ε)=1

∀ε>0,P(lim sup⁡n→∞∣Xn−X∣>ε)=0 \forall \varepsilon>0, \mathbf{P}(\limsup_{n\to \infty} |X_n-X|>\varepsilon)=0 ε>0,P(nlimsupXnX>ε)=0

上式又可用“不时发生”(infinitely often)的概念,写为
∀ε>0,P(∣Xn−X∣>ε,i. o. )=0 \forall \varepsilon>0, \mathbf{P}(|X_n-X|>\varepsilon, \text{i. o. })=0 ε>0,P(XnX>ε,i. o. )=0

上式如何理解?可从∪n=m∞{∣Xn−X∣>ε}\cup_{n=m}^{\infty}\{|X_n-X|>\varepsilon\}n=m{XnX>ε}入手,它表示给定mmm后,使∣Xn−X∣>ε|X_n-X|>\varepsilonXnX>εn≥mn\geq mnm)至少发生一次的ω\omegaω的集合。而如果不管给定的mmm有多大,在有些ω\omegaω上,∣Xn−X∣>ε|X_n-X|>\varepsilonXnX>εn≥mn\geq mnm)都会至少发生一次,这些ω\omegaω的集合就是“不时发生”的概念:
{∣Xn−X∣>ε,i. o. }=∩m=1∞∪n=m∞{∣Xn−X∣>ε}=lim sup⁡n→∞{∣Xn−X∣>ε} \begin{aligned} & \left\{|X_n-X|>\varepsilon, \text{i. o. }\right\}\\ =& \cap_{m=1}^{\infty} \cup_{n=m}^{\infty} \left\{|X_n-X|>\varepsilon\right\}\\ =& \limsup_{n\to\infty} \left\{|X_n-X|>\varepsilon\right\} \end{aligned} =={XnX>ε,i. o. }m=1n=m{XnX>ε}nlimsup{XnX>ε}

因此,几乎必然收敛可表示为
0=P({∣Xn−X∣>ε,i. o. })=P(∩m=1∞∪n=m∞{∣Xn−X∣>ε})=P(lim sup⁡n→∞{∣Xn−X∣>ε}) \begin{aligned} 0 =& \mathbf{P}\left(\left\{|X_n-X|>\varepsilon, \text{i. o. }\right\}\right)\\ =& \mathbf{P}(\cap_{m=1}^{\infty} \cup_{n=m}^{\infty} \left\{|X_n-X|>\varepsilon\right\})\\ =& \mathbf{P}(\limsup_{n\to\infty} \left\{|X_n-X|>\varepsilon\right\}) \end{aligned} 0===P({XnX>ε,i. o. })P(m=1n=m{XnX>ε})P(nlimsup{XnX>ε})

再介绍一个定理:设{En∈F}\{E_n\in\mathcal{F}\}{EnF}为任意序列,则

  • P(lim sup⁡n→∞En)=lim⁡n→∞P(∪m=n∞Em)\mathbf{P}(\limsup_{n\to \infty} E_n)=\lim\limits_{n\to\infty}\mathbf{P}(\cup_{m=n}^{\infty} E_m)P(nlimsupEn)=nlimP(m=nEm)
  • P(lim inf⁡n→∞En)=lim⁡n→∞P(∩m=n∞Em)\mathbf{P}(\liminf_{n\to \infty} E_n)=\lim\limits_{n\to\infty}\mathbf{P}(\cap_{m=n}^{\infty} E_m)P(nliminfEn)=nlimP(m=nEm).

2 Borel-Cantelli引理

Borel-Cantelli引理是证明几乎必然收敛时用到最多的工具之一。引理分为两部分,一是收敛部分,讲收敛所需的充分条件,二是发散(divergence)部分,讲收敛所需的必要条件,即序列的独立性。

Borel-Cantelli引理:

  1. 对于任意一个事件序列{En∈F}\{E_n\in\mathcal{F}\}{EnF},若∑n=1∞P(En)<∞\sum\limits_{n=1}^{\infty}\mathbf{P}(E_n)<\inftyn=1P(En)<,则P(En,i. o. )=0\mathbf{P}(E_n, \text{i. o. })=0P(En,i. o. )=0
  2. 对于独立事件的序列{En∈F}\{E_n\in\mathcal{F}\}{EnF},若∑n=1∞P(En)=∞\sum\limits_{n=1}^{\infty}\mathbf{P}(E_n)=\inftyn=1P(En)=,则P(En,i. o. )=1\mathbf{P}(E_n, \text{i. o. })=1P(En,i. o. )=1.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值