1 几乎必然收敛的概念
几乎必然收敛(almost sure convergence),又叫以概率1收敛(convergence with probability 1),定义为:随机变量序列{Xn}\{X_n\}{Xn}满足
P(limn→∞Xn→X)=1
\mathbf{P}(\lim_{n\to \infty} X_n\to X)=1
P(n→∞limXn→X)=1
则Xn→a. s. XX_n\xrightarrow{\text{a. s. }}XXna. s. X。
它的等价条件有很多,比如:
P(limn→∞∣Xn−X∣<ε)=1
\mathbf{P}(\lim_{n\to \infty} |X_n-X|<\varepsilon)=1
P(n→∞lim∣Xn−X∣<ε)=1
或
∀ε>0,P(lim supn→∞∣Xn−X∣>ε)=0
\forall \varepsilon>0, \mathbf{P}(\limsup_{n\to \infty} |X_n-X|>\varepsilon)=0
∀ε>0,P(n→∞limsup∣Xn−X∣>ε)=0
上式又可用“不时发生”(infinitely often)的概念,写为
∀ε>0,P(∣Xn−X∣>ε,i. o. )=0
\forall \varepsilon>0, \mathbf{P}(|X_n-X|>\varepsilon, \text{i. o. })=0
∀ε>0,P(∣Xn−X∣>ε,i. o. )=0
上式如何理解?可从∪n=m∞{∣Xn−X∣>ε}\cup_{n=m}^{\infty}\{|X_n-X|>\varepsilon\}∪n=m∞{∣Xn−X∣>ε}入手,它表示给定mmm后,使∣Xn−X∣>ε|X_n-X|>\varepsilon∣Xn−X∣>ε(n≥mn\geq mn≥m)至少发生一次的ω\omegaω的集合。而如果不管给定的mmm有多大,在有些ω\omegaω上,∣Xn−X∣>ε|X_n-X|>\varepsilon∣Xn−X∣>ε(n≥mn\geq mn≥m)都会至少发生一次,这些ω\omegaω的集合就是“不时发生”的概念:
{∣Xn−X∣>ε,i. o. }=∩m=1∞∪n=m∞{∣Xn−X∣>ε}=lim supn→∞{∣Xn−X∣>ε}
\begin{aligned}
& \left\{|X_n-X|>\varepsilon, \text{i. o. }\right\}\\
=& \cap_{m=1}^{\infty} \cup_{n=m}^{\infty} \left\{|X_n-X|>\varepsilon\right\}\\
=& \limsup_{n\to\infty} \left\{|X_n-X|>\varepsilon\right\}
\end{aligned}
=={∣Xn−X∣>ε,i. o. }∩m=1∞∪n=m∞{∣Xn−X∣>ε}n→∞limsup{∣Xn−X∣>ε}
因此,几乎必然收敛可表示为
0=P({∣Xn−X∣>ε,i. o. })=P(∩m=1∞∪n=m∞{∣Xn−X∣>ε})=P(lim supn→∞{∣Xn−X∣>ε})
\begin{aligned}
0 =& \mathbf{P}\left(\left\{|X_n-X|>\varepsilon, \text{i. o. }\right\}\right)\\
=& \mathbf{P}(\cap_{m=1}^{\infty} \cup_{n=m}^{\infty} \left\{|X_n-X|>\varepsilon\right\})\\
=& \mathbf{P}(\limsup_{n\to\infty} \left\{|X_n-X|>\varepsilon\right\})
\end{aligned}
0===P({∣Xn−X∣>ε,i. o. })P(∩m=1∞∪n=m∞{∣Xn−X∣>ε})P(n→∞limsup{∣Xn−X∣>ε})
再介绍一个定理:设{En∈F}\{E_n\in\mathcal{F}\}{En∈F}为任意序列,则
- P(lim supn→∞En)=limn→∞P(∪m=n∞Em)\mathbf{P}(\limsup_{n\to \infty} E_n)=\lim\limits_{n\to\infty}\mathbf{P}(\cup_{m=n}^{\infty} E_m)P(n→∞limsupEn)=n→∞limP(∪m=n∞Em);
- P(lim infn→∞En)=limn→∞P(∩m=n∞Em)\mathbf{P}(\liminf_{n\to \infty} E_n)=\lim\limits_{n\to\infty}\mathbf{P}(\cap_{m=n}^{\infty} E_m)P(n→∞liminfEn)=n→∞limP(∩m=n∞Em).
2 Borel-Cantelli引理
Borel-Cantelli引理是证明几乎必然收敛时用到最多的工具之一。引理分为两部分,一是收敛部分,讲收敛所需的充分条件,二是发散(divergence)部分,讲收敛所需的必要条件,即序列的独立性。
Borel-Cantelli引理:
- 对于任意一个事件序列{En∈F}\{E_n\in\mathcal{F}\}{En∈F},若∑n=1∞P(En)<∞\sum\limits_{n=1}^{\infty}\mathbf{P}(E_n)<\inftyn=1∑∞P(En)<∞,则P(En,i. o. )=0\mathbf{P}(E_n, \text{i. o. })=0P(En,i. o. )=0;
- 对于独立事件的序列{En∈F}\{E_n\in\mathcal{F}\}{En∈F},若∑n=1∞P(En)=∞\sum\limits_{n=1}^{\infty}\mathbf{P}(E_n)=\inftyn=1∑∞P(En)=∞,则P(En,i. o. )=1\mathbf{P}(E_n, \text{i. o. })=1P(En,i. o. )=1.