本文旨在整理一些集合论中的基础概念与定理,其中术语尽量使用中文。
1 集合论基础
首先,我们介绍Cartesian product(笛卡尔积、直积)A×BA\times BA×B,就是从AAA中、BBB中各取一个元素组成的有序数对。如果是nnn个集合,它们的Cartesian product就是一个nnn-tuples:
×i=1nAi={
(a1,…,an):ai∈Ai,i=1,…,n} \times_{i=1}^n A_i = \{(a_1,\ldots,a_n):a_i\in A_i,i=1,\ldots,n\} ×i=1nAi={
(a1,…,an):ai∈Ai,i=1,…,n}
所谓关系(Relation),是A×AA\times AA×A的任一子集,就叫集合AAA上的一个关系,记为RRR。如果(x,y)∈R(x,y)\in R(x,y)∈R,则可写为xRyxRyxRy。RRR可能的性质有:
- 自反性(Reflexive):xRxxRxxRx;
- 对称性(Symmetric):若xRyxRyxRy则必有yRxyRxyRx;
- 反对称性(Antisymmetric):若xRyxRyxRy且yRxyRxyRx,则必有x=yx=yx=y;
- 传递性(Transitive):若xRyxRyxRy且yRzyRzyRz,则必有xRzxRzxRz。
等价关系(Equivalence relation),就是自反、对称、传递的关系。
给定AAA上的一个等价关系RRR,那么AAA中的元素xxx的等价类(equivalence class),就是集合Ex={ y∈A:xRy}E_x = \{y\in A:xRy\}Ex={ y∈A:xRy}。若ExE_xEx和EyE_yEy是xxx和yyy的等价类,那么必有Ex∩Ey=∅E_x\cap E_y=\emptysetEx∩Ey=∅或Ex=EyE_x=E_yEx=Ey。
自反、反对称、传递的关系,就叫partial ordering(偏序),可以用符号≥\geq≥或≤\leq≤表示。对于任意partial ordering,如果将其中的(x,x)(x,x)(x,x)元素剔除,就变成了strict ordering,用符号>\gt>或<\lt<表示,这种关系不再是自反的和反对称的,但依旧有传递性。如果对于集合AAA,每一对(x,y)∈A×A(x,y)\in A\times A(x,y)∈A×A都满足x<yx\lt yx<y、x>yx\gt yx>y或x=yx=yx=y这三种中的一种,那么称AAA是linearly ordered。再进一步,定义集合AAA的最小元素为a∈Aa\in Aa∈A,它满足∀x∈A,a≤x\forall x\in A, a\leq x∀x∈A,a≤x(最大元素可类似定义),那么,如果linearly orderedAAA的每一个子集都有一个最小元素,则称AAA是well-ordered。
一个映射/变换/函数(mapping/transformation/function)定义为T:X↦YT:X\mapsto YT:X↦Y,这是一种将XXX中的每个元素与YYY中唯一一个元素联系起来的规则。XXX称为定义域(domain),YYY为到达域(codomain),集合GT={ (x,y):x∈X,y=T(x)}⊆X×YG_T=\{(x,y):x\in X,y=T(x)\}\subseteq X\times YGT={ (x,y):x∈X,y=T(x)}⊆X×Y称为graph of TTT。集合T(A)={ T(x):x∈A}⊆YT(A)=\{T(x):x\in A\}\subseteq YT(A)={ T(x):x∈A}⊆Y称为AAA在TTT下的像(image),对于B⊆YB\subseteq YB⊆Y,集合T−1(B)={ x:T(x)∈B}⊆XT^{-1}(B)=\{x:T(x) \in B\}\subseteq XT−1(B)={ x:T(x)∈B}⊆X称为BBB在TTT下的inverse image。集合T(X)T(X)T(X)称为TTT的值域(range),若T(X)=YT(X)=YT(X)=Y则称该映射为from XXX onto YYY,中文叫满射,否则是into YY