数学基础系列:集合与数

本文深入探讨集合论的基础概念,包括笛卡尔积、关系、偏序、映射和基数。阐述了可数集合的性质,如整数、有理数集的可数性。还讨论了实数连续统的不可数性,并介绍了集合的序列、上极限和下极限。文章进一步讲解了环、域、半环和σ-域在概率论和测度论中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文旨在整理一些集合论中的基础概念与定理,其中术语尽量使用中文。

1 集合论基础

首先,我们介绍Cartesian product(笛卡尔积、直积)A×BA\times BA×B,就是从AAA中、BBB中各取一个元素组成的有序数对。如果是nnn个集合,它们的Cartesian product就是一个nnn-tuples:
×i=1nAi={ (a1,…,an):ai∈Ai,i=1,…,n} \times_{i=1}^n A_i = \{(a_1,\ldots,a_n):a_i\in A_i,i=1,\ldots,n\} ×i=1nAi={ (a1,,an):aiAi,i=1,,n}

所谓关系(Relation),是A×AA\times AA×A的任一子集,就叫集合AAA上的一个关系,记为RRR。如果(x,y)∈R(x,y)\in R(x,y)R,则可写为xRyxRyxRyRRR可能的性质有:

  • 自反性(Reflexive):xRxxRxxRx
  • 对称性(Symmetric):若xRyxRyxRy则必有yRxyRxyRx
  • 反对称性(Antisymmetric):若xRyxRyxRyyRxyRxyRx,则必有x=yx=yx=y
  • 传递性(Transitive):若xRyxRyxRyyRzyRzyRz,则必有xRzxRzxRz

等价关系(Equivalence relation),就是自反、对称、传递的关系。

给定AAA上的一个等价关系RRR,那么AAA中的元素xxx等价类(equivalence class),就是集合Ex={ y∈A:xRy}E_x = \{y\in A:xRy\}Ex={ yA:xRy}。若ExE_xExEyE_yEyxxxyyy的等价类,那么必有Ex∩Ey=∅E_x\cap E_y=\emptysetExEy=Ex=EyE_x=E_yEx=Ey

自反、反对称、传递的关系,就叫partial ordering(偏序),可以用符号≥\geq≤\leq表示。对于任意partial ordering,如果将其中的(x,x)(x,x)(x,x)元素剔除,就变成了strict ordering,用符号>\gt><\lt<表示,这种关系不再是自反的和反对称的,但依旧有传递性。如果对于集合AAA,每一对(x,y)∈A×A(x,y)\in A\times A(x,y)A×A都满足x<yx\lt yx<yx>yx\gt yx>yx=yx=yx=y这三种中的一种,那么称AAAlinearly ordered。再进一步,定义集合AAA的最小元素为a∈Aa\in AaA,它满足∀x∈A,a≤x\forall x\in A, a\leq xxA,ax(最大元素可类似定义),那么,如果linearly orderedAAA的每一个子集都有一个最小元素,则称AAAwell-ordered

一个映射/变换/函数mapping/transformation/function)定义为T:X↦YT:X\mapsto YT:XY,这是一种将XXX中的每个元素与YYY中唯一一个元素联系起来的规则。XXX称为定义域(domain)YYY到达域(codomain),集合GT={ (x,y):x∈X,y=T(x)}⊆X×YG_T=\{(x,y):x\in X,y=T(x)\}\subseteq X\times YGT={ (x,y):xX,y=T(x)}X×Y称为graph of TTT。集合T(A)={ T(x):x∈A}⊆YT(A)=\{T(x):x\in A\}\subseteq YT(A)={ T(x):xA}Y称为AAATTT下的像(image),对于B⊆YB\subseteq YBY,集合T−1(B)={ x:T(x)∈B}⊆XT^{-1}(B)=\{x:T(x) \in B\}\subseteq XT1(B)={ x:T(x)B}X称为BBBTTT下的inverse image。集合T(X)T(X)T(X)称为TTT值域(range),若T(X)=YT(X)=YT(X)=Y则称该映射为from XXX onto YYY,中文叫满射,否则是into YY

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值