作为AI领域的从业者,我们每天都在与各种模型优化技术打交道。今天想和大家深入聊聊大模型训练中一个核心技术——SFT(监督微调),以及它与其他常用技术的区别。很多刚入行的朋友经常会混淆这些概念,希望通过这篇文章能帮大家理清思路。
什么是SFT?
监督微调(SFT)是大模型训练流程中的关键一步,它就像是给通用大模型"上专业课"——在预训练的基础上,通过特定领域的标注数据进一步训练模型,使其在特定任务上表现更优。业内大佬常说:“预训练让模型识字,SFT让模型懂行”。
SFT与七大相关技术的核心区别
1. SFT vs 预训练
维度 | SFT | 预训练 |
---|---|---|
目标 | 提升特定领域能力 | 获得通用语言理解能力 |
数据量 | 2K-10W样本 | 海量数据(通常数十亿tokens) |
训练方式 | 监督学习 | 自监督学习(next token prediction) |
2. SFT vs RLHF
这是最容易混淆的一对概念,业内大佬总结了四个核心区别:
- 目标不同:SFT提升特定领域能力,RLHF让模型输出更符合人类意图
- 学习方式:SFT是监督学习,RLHF是强化学习
- 反馈机制:SFT只给正向示例,RLHF可提供负反馈纠错
- 优化粒度:SFT优化单个token,RLHF优化整个语句
3. SFT vs RAG
技术 | 原理 | 优势 | 劣势 | 适用场景 |
---|---|---|---|---|
SFT | 模型参数微调 | 底层认知对齐、延迟低 | 可能导致模型遗忘、数据静态 | 定制能力、固定知识库 |
RAG | 外挂知识库检索 | 动态数据、可解释性高 | 仅表层特征提取、依赖检索质量 | 实时信息、动态知识库 |
4. SFT vs Continue-pretrain
增量预训练(Continue-pretrain)和SFT都属于模型优化,但定位完全不同:
- 时机不同:增量预训练在预训练之后,SFT之前
- 数据量:增量预训练需要的数据量远大于SFT
- 应用场景:当基础模型与目标领域差异极大时才考虑增量预训练,99%的情况都不需要
5. SFT vs In-context learning
In-context learning(上下文学习)就是我们常说的"提示词工程",它与SFT的核心区别在于:
- 参数是否变化:SFT修改模型参数,提示词工程不修改参数
- 持久化:SFT的效果是永久的,提示词的效果是临时的
- 资源需求:SFT需要训练资源,提示词工程只需推理资源
6. SFT vs LoRA/PEFT
很多人会问:"现在都用LoRA了,还要全量SFT吗?"业内大佬的回答是:“看场景”。
全参数SFT精度上限更高,但资源消耗大;PEFT(参数高效微调)如LoRA只需训练少量参数,节省资源,但精度略低。实际应用中,大厂通常会先用全量SFT做基础模型,再用LoRA做领域适配。
7. SFT vs Prompt tuning
Prompt tuning是另一种参数高效微调方法,它与SFT的区别在于:
- 训练对象:Prompt tuning只训练提示词相关参数,SFT训练模型全部或大部分参数
- 适用场景:Prompt tuning适合迁移学习,SFT适合深度定制
SFT的核心挑战:数据决定一切
业内有个共识:SFT从业者95%的时间都在处理数据。高质量的训练数据是SFT成功的关键。有位资深工程师分享经验:“之前调了很久模型效果都上不去,最后老老实实人工清洗数据,效果立刻就稳定了”。
SFT数据构建有三个关键点:
- 格式统一:所有数据使用相同的JSON格式,包括markdown风格、缩进等
- 质量优先:Meta的LIMA论文证明,1万高质量样本足以达到良好效果
- 多样性:要刻意增加任务多样性和表达方式多样性,甚至加入noisy prompt提升抗噪性
写在最后
SFT是连接通用大模型与行业应用的桥梁,理解SFT及其与其他技术的区别,是做好大模型落地的基础。记住业内大佬的忠告:“不要迷恋调参技巧,数据质量才是王道”。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发