收藏!大模型个性化技术详解:从RAG到Agent的实现路径与最佳实践

大模型已经渗透到各个领域,并取得卓越的成效,随着技术逐渐进入深水区,有一个比较常见的问题逐步浮现,那便是个性化。对话系统、搜索系统等场景,在逐步做深以后,为了给用户提供更加精准的服务,多半都要开始考虑用个性化的方式来提升用户体验。最近有一篇论文总结了一些个性化的思路和方案,我来讲讲。

  • 论文:A Survey of Personalization: From RAG to Agent
  • 链接:https://arxiv.org/abs/2504.10147

目录:

  • 个性化的定义
  • 引入个性化信息
  • 预检索阶段
  • 查询阶段
  • 生成阶段
  • 智能体的个性化
  • 读后感

个性化的定义

在文章中的这个场景下的定义是这样的。

Personalization in current research refers to the tailoring of model predictions or generated content to align with an individual’s preferences.

当前研究中的个性化指的是将模型预测或生成内容定制为与个人用户偏好保持一致。

模型的预测或生成内容,要和用户的偏好一致。那么,现在的问题便是,什么东西能体现用户的偏好,这里给出了4个方向。

  • 显式用户画像。明确的用户信息,包括各种属性(年龄、性别、工作、教育背景等)、用户的社会关系等。
  • 用户历史交互。通过点赞点踩、购买等行为体现用户的偏好。
  • 用户生成的内容。用户的聊天、邮件、评论等自己写的内容。
  • 个性化用户模拟。使用大模型和Agent等工具进行的人物模拟。

这些都是用户偏好的关键来源,是我们做个性化的基础,对这些信息进行整合加工,能得到我们所需的个性化信息。

引入个性化信息

在一个完整的RAG系统里,根据个性化的引入思路,可以分为这3个部分。

  • Pre-retrieval:预检索阶段,可以通过query改写等模式进行一定的信息拓展,此处可以引入用户信息,实现个性化。
  • Retrieval:查询阶段,在检索过程中直接检索出最适合用户的内容。
  • Generation:生成阶段,结果生成时,通过prompt等方式引入个性化信息,让大模型的内容生成带有个性化性质。

此处,我会引用一些论文提到的相关论文来解释具体是怎么做的。

预检索阶段

预检索阶段,主要是在改写和拓展阶段,通过注入个性化信息,来实现对query的更新,从而实现个性化。

预检索阶段主要就是改写和拓展,改写是指通过对原始query的更新,提升检索效果,常见的就是纠错消歧、加入上下文之类的,拓展则是通过提供额外的信息对搜索query进行信息的扩充,其实某种程度上和改写也有些概念上的交集。

  • 直接使用大模型来做改写,例如CLE-QR( Query rewriting in taobao search)训练一个生成模型,将商品、行为等信息加入后直接进行训练。
  • 借助检索、推理、记忆模块的辅助来间接实现个性化改写。如CoPS(Cognitive Personalized Search Integrating Large Language Models with an Efficient Memory Mechanism)就是通过记忆模块的引入了个性化信息。
  • 论文(Personalized query expansion with contextual word embeddings)识别出用户感兴趣的关键词后,和现有query进行结合形成新的query,从而实现对query的拓展。

查询阶段

在检索阶段,结合预检索构造的query进行个性化的检索。这里包括索引、检索算法和后检索优化这3个方面。

索引层面,可以将用户历史行为进行编码,生成共同的索引(Pearl: Personalizing large language model writing assistants with generation-calibrated retrievers),也可以通过图谱的模式,来进行链接引入(PGraphRAG: Personalized Graph-Based Retrieval for Large Language Models)。

检索算法上,此部分主要关心的还是表征。

  • 稠密检索作为主流,可以考虑把本地设备存储、时间事件等因素融入到模型中。
  • 稀疏检索中,可以把一些相关的词汇增加权重,这些相关词汇可以来源于用户的历史搜索。(OPPU:Democratizing large language models via personalized parameter-efficient fine-tuning)
  • 还有通过prompt进行优化的,例如LAPS( Doing personal laps: Llm-augmented dialogue construction for personalized multi-session conversational search)在多轮对话搜索中存储用户偏好,用提示召回相关信息
  • 另外还有一些方案,如借助强化学习的方式来融合稠密和稀疏结果(Optimization methods for personalizing large language models through retrieval augmentation)。注意,融合的方式不止有强化,简单的合并重排其实也能够实现

检索完,还有后检索优化,即对内容进行进一步优化和整合,主要是重排、摘要、压缩3个步骤。

  • 重排里,PersonaRAG(PersonaRAG: Enhancing Retrieval-Augmented Generation Systems with User-Centric Agents)引入 Live Session Agent 与 Document Ranking Agent,来优化排序,本质就是一种Agentic思路。
  • 摘要,除了简单的总结,还可以借助角色扮演智能体系统对检索历史做摘要,形成带有个性化观点的总结(Rehearse With User: Personalized Opinion Summarization via Role-Playing based on Large Language Models)。
  • 压缩主要是对内容进行精炼,有些工作已经和摘要融合在一起了,这部分作者虽然有举论文的例子,但似乎和个性化的关系不大,此处我也就不加入额外的信息了,大家知道这一步即可。

在本节的最后,作者还进行了有缺点的总结,简单的说基本是简单的方案效率高,但是最终的效果有限,复杂的方案收益较明显,但是成本也会随之提高。

生成阶段

生成阶段是指基于前文处理好的query、检索得到的Doc,配合prompt和个性化信息,形成个性化的内容生成。

最直接的方式,就是直接把显式的信息放到prompt里,和query、doc一起扔进大模型。

  • 类似Character Profiling(Evaluating character understanding of large language models via character profiling from fictional works.)就是在角色扮演等任务重加入画像信息,让生成内容复合”人设“。
  • 也有把交互历史通过提示注入,这种方式能让模型根据历史信息进行推理而完成个性化任务。(Do llms understand user preferences? evaluating llms on user rating prediction.)
  • ONCE(Once: Boosting content-based recommendation with both open-and closed-source large language models)、 LLMTreeRec(LLMTreeRec: Unleashing the Power of Large Language Models for Cold-Start Recommendations)等是利用用户和物料的历史行为关系构造摘要,然后用于推荐系统中。
  • RecGPT( Recgpt: Generative personalized prompts for sequential recommendation via chatgpt training paradigm)、PFCL(Personalized federated continual learning via multi-granularity prompt)通过微调的方式来完成自适应,逐步抛弃原有调整prompt的模式。

另外,还有一些隐式的方式,通过参数化的方式,实现信息的注入。目前的思路还是比较直接,基本就是微调和强化学习两条路。

  • 首先是微调的方式,例如PLoRA(Personalized LoRA for human-centered text understanding)通过和lora类似的方式,加入一个额外的模块来记录个性化的信息。
  • 然后是强化学习的对齐。如P-RLHF(Personalized language modeling from personalized human feedback)联合学习用户专属奖励模型,使生成对齐个人风格。

智能体的个性化

论文的标题是“From RAG to Agent”,因此除了RAG自然还要把Agent给放进来。在这里,个性化的智能体定义如下。

A personalized LLM-based agent is a system designed to dynamically incorporate user context, memory, and external tools or APIs to support highly personalized and goal-oriented interactions, and solve problems in a goal-oriented manner.

个性化 LLM 智能体是一种动态融合用户上下文、记忆及外部工具/API的系统,支持高度个性化、目标导向交互和问题解决。

对比RAG,可以发现其实处理流程也非常接近,其实就是个性化理解、个性化规划与执行以及个性化生成,此时就可以看成是一个个性化RAG++,在原有的RAG基础上增加持久记忆、工具/API、以及更为复杂的长期交互。(这点我也非常支持,Agent本质就是更为灵活的RAG了)。

个性化理解重在能对用户进行更精准地表征和理解,从而确保交互既有意义又符合语境。这里包括用户理解、角色理解、用户-角色的联合理解。

  • 用户理解是指要对用户偏好、上下文、意图进行建模。例如在医疗健康智能体中( Conversational health agents: A personalized llm-powered agent framework),用户画像直接影响智能体的行为和决策。
  • 角色理解,即要让模型知道,自己具体是一个什么角色来帮助用户解决问题,并要持续维持好这个角色。
  • 进一步研究两者的配合度,增强大模型的社交能力和性格特征。

个性化规划与执行指根据个体用户的独特情境与目标,设计并实施策略或行动,该过程要求智能体动态整合长期记忆、实时推理与外部工具调用。

  • 记忆部分在我之前的文章有聊过挺多的,以MemoryOS为代表([前沿重器[67] | 论文提到的论文也基本是类似的模式。
  • 外部工具能让Agent系统解决的问题变得更多,也更可靠。PUMA( Large Language Models Empowered Personalized Web Agents)利用自适应的API进行个性化的任务编排,在电商场景中提供助力。

最后是个性化生成,这里既要求事实正确(完成任务),又要契合用户的爱好偏好。

  • 事实正确强调个性化响应的准确性、一致性与事实可靠性,确保跨交互的可信度。
  • 对齐偏好则确保输出反映个体性格、价值观与交互风格,要求智能体动态解读隐含用户线索并自适应调整。

读后感

说说自己的读后感吧。

  • 论文内提到大量技术手段,尝试把各种个性化信息加入到RAG、Agent系统中,让大模型系统的回复更加能体现个性化,这点还是非常不错的,里面的论文提供了很多有意思的点子,很多都在现实场景有尝试的价值,储备起来非常好。
  • 然而,感觉对个性化的剖析和应用还是比较粗,举几个例子吧,个性化的前提是画像,画像信息的不同类型,如数值、个人信息、行为等,直接联系任务和非直接联系任务(举例,类似性别、年龄就是距离目标很远的画像信息,喜欢电脑、喜欢看动漫就是距离任务很近的画像信息),不同信息的利用价值和使用方法都有很大差异。
  • 熟悉我的朋友应该知道,早年推荐系统在个性化就已经有大量的研究经验,在这篇论文并非没有提但是感觉还是比较少的。这个可能是受领域、信息之类原因的限制吧,还是有很多可以进一步挖掘的。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值