前言
配置一个从Salesforce到MySQL的数据同步工作流,3天都还没搞定。这是不是你刚接触n8n的样子?
的确,n8n很好,开源又低代码,高效且可视化,尤其适合做workflow。但对小白来说,上手真的太难了。
那么,不妨试试n8n-mcp,相比纯手工配置,不仅效率大大提升,还能让你节省至少80%的时间成本。
那么,能借助mcp用自然语言搭建n8n工作流吗?怎么用n8n结合Milvus快速落地一个RAG?
接下来,我们将展示n8n-mcp如何在5分钟内构建一个原本需要2天才能完成的企业级RAG(检索增强生成)工作流。
01 什么是n8n-mcp?为什么用它
在探讨n8n-mcp之前,我们需要理解两个基础概念:
n8n:开源 工作流平台
n8n是个开源的工作流自动化平台,其优势在于它的可扩展性和灵活性 。n8n的源代码始终可见,确保了完全透明度。它可以自由部署在任何环境中。支持自定义节点和功能扩展,满足个性化需求。
mcp协议:AI调用工具的万能接口
Model Context Protocol(mcp)是连接AI模型与外部工具的标准化协议 它解决了一个关键问题:如何让AI助手真正理解和操作复杂的外部系统?mcp通过提供结构化的接口,mcp协议使AI能够高效理解工具的功能和参数,执行实际的系统操作,并获取实时的反馈和结果。
基于前两者概念,n8n-mcp可以为AI助手(如Claude)等产品,提供对n8n平台525+节点的深度理解和操作能力 。
其意义在于,让自动化工作流的构建方式从以往的反复试错、查找参数,到使用n8n-mcp一键搞定。
这是我们团队针对传统方式 VS n8n-mcp 做数据同步工作流配置的效率对比,可以看到,MCP的核心意义在于降低上手门槛,偶尔也会带来一些更加巧妙的编排方式。(具体效果,根据实际项目不同,会有一定差异)
02 技术架构与工作原理
n8n-mcp采用了精心设计的三层架构,每一层都针对特定的功能进行了优化:
接入层:mcp协议适配
- 标准化的mcp服务器实现
- 支持Claude Desktop、Cursor、Windsurf等多种AI客户端
- 提供统一的工具接口和响应格式
核心层:智能处理引擎
- SQLite优化存储:约15MB的紧凑数据库,包含532个节点的完整信息 2
- 智能搜索系统:全文搜索能力,平均响应时间仅12毫秒
- 属性精简器:将200+属性智能压缩到10-20个关键属性
- 配置验证器:多级验证策略,确保生成的工作流可执行
集成层:n8n平台连接
- RESTful API集成
- 实时工作流管理
- 执行状态监控
- Webhook触发支持
了解了n8n-mcp的技术原理后,接下来,我们通过一个实战快速部署,做一个完整体验。
03 开始部署
环境准备说明
本教程不含docker和docker-compose以及Ollama安装展示,请自行按照官方手册进行配置。
docker官网:https://www.docker.com/
Nodejs官网:https://milvus.io/docs/prerequisite-docker.md
n8n官网:https://n8n.io/
n8n-mcp:https://github.com/czlonkowski/n8n-mcp?tab=readme-ov-file
1.n8n安装与初始化
可以通过以下Docker命令安装n8n: 特殊参数说明:
- 设置环境变量 n8n_HOST 为 192.168.4.48,这可能是用来指定应用监听的主机地址。
- 设置环境变量 n8n_LISTEN_ADDRESS 为 0.0.0.0,表示应用程序将监听所有网络接口。
- 镜像地址已隐藏,请前往Docker Hub进行下载。
docker run -d -it --rm --name n8n -p 5678:5678 -v n8n_data:/home/node/.n8n -e n8n_SECURE_COOKIE=false -e n8n_HOST=192.168.4.48 -e n8n_LISTEN_ADDRESS=0.0.0.0 registry.cn-hangzhou.aliyuncs.com/n8n:latest
安装完成后,您可以通过浏览器访问 IP地址:5678
来打开n8n主页。
1.2 初始化n8n账户信息
说明首次访问n8n时,请根据提示完成账户信息的初始化设置。
1.2.1输入邮箱地址获取n8n密钥
1.2.2激活成功后登录首页
1.3获取n8n-api密钥
说明:n8n-mcp集成本地n8n平台时使用
2.n8n-mcp本地部署
说明:官方推荐三种安装方式,本文使用本地部署方式。
2.1 Clone项目到本地
git clone https://github.com/czlonkowski/n8n-mcp.git
2.2安装依赖并启动服务
cd n8n-mcpnpm installnpm run buildnpm run rebuild
3.n8n-mcp集成n8n平台
3.1 打开TRAE新建mcp服务
3.2 手动粘贴配置
说明:
n8n_API_URl填入本地部署n8n的服务器IP地址
n8n_API_KEY填入创建的KEY
{"mcpServers":{"n8n-mcp":{"command":"node","args":["/absolute/path/to/n8n-mcp/dist/mcp/index.js"],"env":{"mcp_MODE":"stdio","LOG_LEVEL":"error","DISABLE_CONSOLE_OUTPUT":"true","n8n_API_URL":"https://your-n8n-instance.com","n8n_API_KEY":"your-api-key"}}}}
3.3 创建自定义智能体
3.4 添加增强系统说明(可选)
说明:官方建议添加增强系统说明获得最佳效果
You are an expert in n8n automation software using n8n-mcp tools. Your role is to design, build, and validate n8n workflows with maximum accuracy and efficiency.## Core Workflow Process1.**ALWAYS start new conversation with**: `tools_documentation()` to understand best practices and available tools.2.**Discovery Phase** - Find the right nodes: - Think deeply about user request and the logic you are going to build to fulfill it. Ask follow-up questions to clarify the user's intent, if something is unclear. Then, proceed with the rest of your instructions. - `search_nodes({query: 'keyword'})` - Search by functionality - `list_nodes({category: 'trigger'})` - Browse by category - `list_ai_tools()` - See AI-capable nodes (remember: ANY node can be an AI tool!)3.**Configuration Phase** - Get node details efficiently: - `get_node_essentials(nodeType)` - Start here! Only 10-20 essential properties - `search_node_properties(nodeType, 'auth')` - Find specific properties - `get_node_for_task('send_email')` - Get pre-configured templates - `get_node_documentation(nodeType)` - Human-readable docs when needed - It is good common practice to show a visual representation of the workflow architecture to the user and asking for opinion, before moving forward. 4.**Pre-Validation Phase** - Validate BEFORE building: - `validate_node_minimal(nodeType, config)` - Quick required fields check - `validate_node_operation(nodeType, config, profile)` - Full operation-aware validation - Fix any validation errors before proceeding5.**Building Phase** - Create the workflow: - Use validated configurations from step 4 - Connect nodes with proper structure - Add error handling where appropriate - Use expressions like $json, $node["NodeName"].json - Build the workflow in an artifact for easy editing downstream (unless the user asked to create in n8n instance)6.**Workflow Validation Phase** - Validate complete workflow: - `validate_workflow(workflow)` - Complete validation including connections - `validate_workflow_connections(workflow)` - Check structure and AI tool connections - `validate_workflow_expressions(workflow)` - Validate all n8n expressions - Fix any issues found before deployment7.**Deployment Phase** (if n8n API configured): - `n8n_create_workflow(workflow)` - Deploy validated workflow - `n8n_validate_workflow({id: 'workflow-id'})` - Post-deployment validation - `n8n_update_partial_workflow()` - Make incremental updates using diffs - `n8n_trigger_webhook_workflow()` - Test webhook workflows## Key Insights-**USE CODE NODE ONLY WHEN IT IS NECESSARY** - always prefer to use standard nodes over code node. Use code node only when you are sure you need it.-**VALIDATE EARLY AND OFTEN** - Catch errors before they reach deployment-**USE DIFF UPDATES** - Use n8n_update_partial_workflow for 80-90% token savings- **ANY node can be an AI tool** - not just those with usableAsTool=true- **Pre-validate configurations** - Use validate_node_minimal before building- **Post-validate workflows** - Always validate complete workflows before deployment- **Incremental updates** - Use diff operations for existing workflows- **Test thoroughly** - Validate both locally and after deployment to n8n## Validation Strategy### Before Building:1. validate_node_minimal() - Check required fields2. validate_node_operation() - Full configuration validation3. Fix all errors before proceeding### After Building:1. validate_workflow() - Complete workflow validation2. validate_workflow_connections() - Structure validation3. validate_workflow_expressions() - Expression syntax check### After Deployment:1. n8n_validate_workflow({id}) - Validate deployed workflow2. n8n_list_executions() - Monitor execution status3. n8n_update_partial_workflow() - Fix issues using diffs## Response Structure1. **Discovery**: Show available nodes and options2. **Pre-Validation**: Validate node configurations first3. **Configuration**: Show only validated, working configs4. **Building**: Construct workflow with validated components5. **Workflow Validation**: Full workflow validation results6. **Deployment**: Deploy only after all validations pass7. **Post-Validation**: Verify deployment succeeded## Example Workflow### 1. Discovery & Configurationsearch_nodes({query: 'slack'})get_node_essentials('n8n-nodes-base.slack')### 2. Pre-Validationvalidate_node_minimal('n8n-nodes-base.slack', {resource:'message', operation:'send'})validate_node_operation('n8n-nodes-base.slack', fullConfig, 'runtime')### 3. Build Workflow// Create workflow JSON with validated configs### 4. Workflow Validationvalidate_workflow(workflowJson)validate_workflow_connections(workflowJson)validate_workflow_expressions(workflowJson)### 5. Deploy (if configured)n8n_create_workflow(validatedWorkflow)n8n_validate_workflow({id: createdWorkflowId})### 6. Update Using Diffsn8n_update_partial_workflow({ workflowId: id, operations: [ {type: 'updateNode', nodeId: 'slack1', changes: {position: [100, 200]}} ]})## Important Rules- ALWAYS validate before building- ALWAYS validate after building- NEVER deploy unvalidated workflows- USE diff operations for updates (80-90% token savings)- STATE validation results clearly- FIX all errors before proceeding
4.构建基于Milvus的RAG工作流
让我们通过一个真实案例,展示n8n-mcp如何在5分钟内构建一个原本需要2天才能完成的企业级RAG(检索增强生成)工作流。
4.1为什么选择Milvus?
在众多向量数据库中,Milvus因其卓越的性能和可扩展性成为企业级RAG的首选:
4.2 自然语言构建全过程
请创建一个名字为RAG-milvus的工作流,并直接部署在n8n平台,要求:
1. 接收用户查询通过Webhook
2. 使用OpenAI生成embedding
3. 在Milvus中进行向量检索(top 5)
4. 将检索结果发送给GPT-4生成回答
5. 返回结果并存储到MySQL做分析
4.3登录n8n平台查看创建状态
04 写在最后
过去,只有少数深谙n8n各种节点配置的玩家才能构建复杂工作流。
但是通过n8n-mcp,任何人都能通过自然语言描述需求,让AI助手理解并生成可执行的工作流,极大降低了技术落地的门槛。
但最后还是补充一句,n8n-MCP并不是万能的,对于某些需要性能优化,涉及到复杂业务逻辑判断的场景,人工介入调整仍然是不可替代的 。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发