自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(812)
  • 收藏
  • 关注

原创 【收藏备用】智能体(Agent)开发指南:从核心模块到业务落地,掌握大模型应用实战

本文全面解析AI智能体架构,将其定义为"大脑(LLM)+身体(工具)+记忆(知识库)+目标(任务)"四大核心模块。详细阐述感知理解、规划决策、工具调用和执行反馈的技术实现路径,并提供政务、金融等领域的业务落地指南与实战案例。文章探讨多Agent协作等未来趋势,为开发者构建能自主思考、主动执行的AI代理提供从技术到业务的完整方法论。

2025-09-13 11:47:13 781

原创 2025大模型提示词(Prompt)面试宝典:13个核心问题详解,值得收藏

这篇文章系统介绍了大模型提示词(Prompt)工程的核心知识点,包括基本概念、Zero-Shot/Few-Shot/Chain-of-Thought等提示技术,以及设计高效Prompt的七大原则。文章详细讲解了如何通过角色设定、上下文提供、任务分解等方法优化Prompt,并针对文本摘要、RAG系统等具体场景提供差异化设计思路。内容还涵盖了调试思路、创造性控制等实用技巧,是学习大模型提示词技术的全面指南。

2025-09-13 11:35:13 493

原创 【必学收藏】大模型提示词编写与优化全攻略:从入门到精通

本文系统介绍了大模型提示词的编写与优化技巧,从基础理论(目标、上下文、期望、要素)到实战应用(写作、编程、数据分析场景),详细阐述了指令明确、角色扮演、迭代优化等核心原则,并提供了链式提示、思维树等进阶方法。通过学习这些技巧,用户可显著提升与大语言模型的交互效果,提高输出质量和针对性,充分发挥大模型的潜力。

2025-09-13 11:30:32 609

原创 【值得收藏】李飞飞Agent论文:构建多模态智能体的完整框架

李飞飞等专家的《Agent AI》论文提出了完整的智能体认知架构,包含感知、认知、行动、学习和记忆五大模块,形成动态迭代闭环。大模型是Agent的核心驱动力,需通过环境交互解决幻觉问题。论文系统探讨了Agent在游戏、机器人和医疗领域的应用潜力,为Agent研究领域提供了重要方向。

2025-09-12 11:56:14 741

原创 【必收藏】AI Agent vs 工作流:99%的开发者都误解了Agent的真正价值

Anthropic研究团队指出,真正的AI Agent应具备步数不可预设和自主决策两大特征,与固定路径的工作流有本质区别。Agent如同探险家而非轨道列车,适合可验证循环、深度搜索和微小动作规模化场景。开发者应避免盲目追求"Agent热",先明确需求是否需要Agent,从简单开始建立明确度量指标,注重验证,让模型越聪明产品越好用。

2025-09-12 11:51:44 649

原创 一文讲透 RAG 工作原理:用 11 张图说清从检索到生成的全过程(建议收藏)

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。真诚无偿分享!!!vx扫描下方二维码即可加上后会一个个给大家发。

2025-09-12 11:44:50 749

原创 【深度收藏】大模型时代的网络安全攻防:从恶意微调到未来安全路线图

文章探讨了大模型在网络安全中的双面性,包括恶意微调攻击能力、氛围攻击案例、1-day/0-day漏洞利用技术,以及OpenAI等公司的风险管理框架。未来安全大模型将向"领域专家"或"通用代理"发展,但攻防一体、人机协同和严格治理是关键。打造可靠安全AI需技术、伦理与治理三位一体。

2025-09-11 11:37:05 605

原创 n8n 配置 RAG 工作流太复杂?用 MCP + 自然语言自动生成 workflow(建议收藏)

本文介绍n8n-mcp工具,通过MCP协议连接AI助手与n8n平台,让用户能通过自然语言构建工作流。文章解析其三层架构与工作原理,提供完整部署指南,并展示如何用n8n-mcp在5分钟内构建原本需2天完成的企业级RAG工作流。该工具大幅降低了工作流构建的技术门槛,使小白也能快速实现复杂自动化,但在需要性能优化和复杂业务逻辑判断的场景中,人工介入调整仍不可替代。

2025-09-11 11:29:31 749

原创 收藏!大模型个性化技术详解:从RAG到Agent的实现路径与最佳实践

本文详细解析了大模型个性化技术,从RAG到Agent的实现路径。文章首先定义个性化并介绍用户偏好来源,然后详述在预检索、查询和生成三个阶段引入个性化信息的方法,最后探讨智能体个性化实现方案。作者结合多篇前沿论文,提供了丰富的技术思路和实践案例,对深入理解大模型个性化具有重要参考价值,适合技术人员收藏学习。

2025-09-11 11:04:08 604

原创 【必藏】蚂蚁集团MedResearcher-R1:2100条精数据如何打造顶尖医疗AI?

蚂蚁集团开源的MedResearcher-R1是一款医疗领域的Agentic AI,通过"小而精"的数据策略(仅2100条精数据)在权威医疗基准上取得领先。它采用KISA框架从3000万+文献中筛选罕见实体生成高质量训练数据,配备权威性优先的工具和蒙版引导技术,实现从人类知识到AI知识的转化。开源不仅是模型,更是一套可复现的专业AI构建蓝图,为其他领域提供参考。

2025-09-10 11:38:13 968

原创 零基础入门 AI Agent:手把手实现你的第一个智能体

文章提供了构建AI Agent的实用路径:从小问题入手,选择合适LLM,设计交互工具,构建基础工作流,谨慎添加记忆,封装界面,小周期迭代,控制功能范围。强调通过构建特定端到端Agent来学习,而非追求"通用Agent"。每个Agent都经过数十次循环测试才能变得可靠,成功构建一个后,后续开发将变得容易十倍。

2025-09-10 11:32:56 830

原创 【干货收藏】LoRA/QLoRA大模型微调实战:从环境搭建到上线部署

这是一篇关于LoRA/QLoRA大模型微调的完整实操指南,从数据准备、参数配置、模型评估到部署上线提供全流程解决方案。文章包含实际项目经验、避坑指南和可下载脚本模板,帮助读者将通用模型转化为专属模型。作者强调稳定增量数据比单一"神调参"更重要,适用于垂直问答、客服话术等多种场景,并提供了多适配器与持续学习的进阶技巧。

2025-09-10 11:25:03 578

原创 大语言模型(LLM)完全指南:从基础知识到RLHF技术,值得收藏的深度解析

这篇文章全面解析了大语言模型(LLM)的工作原理,分为两大部分。第一部分介绍LLM的基础知识,包括预训练和后训练过程,以及推理机制和幻觉现象。第二部分深入探讨强化学习(RL)在LLM中的应用,包括GRPO算法、思维链推理和带有人类反馈的强化学习(RLHF),并通过AlphaGo和DeepSeek-R1等案例展示了RL如何使模型超越人类水平。

2025-09-10 11:08:25 1212

原创 【程序员必备收藏】一文读懂预训练语言模型如何赋能通用文本嵌入技术

这篇综述系统探讨了预训练语言模型(PLMs)在通用文本嵌入(GPTE)中的核心作用,详细分析了GPTE架构、训练数据及模型规模影响,指出大型PLMs虽性能优越但计算成本高,MoE架构可平衡两者。文章还涵盖多模态嵌入、代码嵌入应用,并展望未来发展方向如解决安全偏见、增强推理能力等。

2025-09-09 11:59:02 610

原创 【必收藏】2025年AI Agents开发全攻略:从零基础到企业级应用,附框架选择指南

文章全面介绍了AI Agents的概念、应用场景及2025年最佳开发工具,包括LangGraph、AutoGraph等框架,以及Dify、AutoGPT等无代码工具。针对不同技术水平的团队提供了从开发框架到企业级平台的多种选择,并分享了实施策略与最佳实践。AI Agents正从简单聊天机器人进化为能规划、行动和协作的智能系统,为企业智能化转型提供强大支持。

2025-09-09 11:54:53 1231

原创 【值得收藏】Dify低代码开发LLM应用:手把手教你搭建AI智能体

Dify是一款开源的大语言模型应用开发平台,提供低代码、可视化的解决方案,让AI应用开发变得简单高效。本文详细介绍了Dify的核心优势,包括低代码开发、多模型支持、丰富功能组件和完整生命周期管理。通过构建"AI智能体HR"的实例,展示了如何利用Dify的知识库、工作流编排等功能,实现人力资源场景的自动化处理,提高工作效率,标准化文档生成,并提供全天候服务。

2025-09-09 11:38:12 1281

原创 一行代码提升大模型性能:从强化学习视角优化SFT的DFT方法

该研究从强化学习视角发现SFT等价于带有"缺陷奖励机制"的强化学习,导致模型过分关注不确定样本,引发训练不稳定和泛化能力差。为解决此问题,论文提出只需一行代码改动的DFT方法,通过动态乘以与词元概率相关的权重修正奖励机制。实验表明,DFT在多个数学推理基准测试中显著优于传统SFT,有效提升了模型泛化能力和训练稳定性。

2025-09-09 11:29:57 575

原创 收藏必看!Google EmbeddingGemma:3亿参数的小钢炮如何媲美大模型?

Google发布的EmbeddingGemma是仅3亿参数的开源文本嵌入模型,性能媲美大模型。支持100+语言,响应快,可灵活调整向量维度,内存占用仅200MB左右,完全支持本地运行。在MTEB榜单上是500M以下参数模型的最高分,适合移动端AI助手、私有知识库等场景,展示了小模型在隐私保护和算力效率方面的潜力。

2025-09-08 11:59:48 962

原创 【必学收藏】大语言模型(LLM)入门指南:参数、训练与涌现能力详解

文章介绍大语言模型(LLM)的基础概念,解释其通过海量文本训练、参数规模和自监督学习方式,能够"涌现"出理解和推理能力。分析了LLM为何能工作——依靠"预测下一个词"的目标、海量数据和Transformer架构。同时指出LLM的优缺点,如擅长文本生成但存在事实幻觉,并提供了Prompt Engineering实用技巧,帮助读者更有效地与LLM互动。

2025-09-08 11:55:58 1212

原创 【必看收藏】大模型本地部署全攻略:避开这些坑,轻松上手

文章探讨了大模型本地部署中的技术挑战,指出不同推理引擎对模型协议支持程度不一,导致部署过程中存在各种问题。开发者需考虑框架对模型版本、参数配置、API功能及并发支持等因素。不同框架提供的API能力和定制化程度各异,部分框架可能不支持某些模型功能(如思考模式开关)。企业应选择社区活跃、功能完善的推理框架,而非仅基于成本考量,以确保业务环境稳定运行。

2025-09-08 11:49:58 705

原创 【必收藏】大语言模型(LLM)从入门到精通:2025年全面学习指南与实战解析

文章全面介绍大语言模型(LLM)的发展历程、核心能力、架构基础及训练流程。LLM基于Transformer架构,通过预训练、监督微调和人类反馈强化学习获得涌现能力、上下文学习等关键特性。文章详解了LLM在检索增强生成和Agent等领域的应用,评测方法及LoRA高效微调技术,展示了LLM在多领域的应用潜力,尽管面临幻觉等挑战,但正引领AI向通用智能迈进。

2025-09-07 10:00:00 998

原创 零代码搭建企业级智能客服:Coze+RAG全链路实战指南

本文详细介绍了如何使用扣子(Coze)Agent开发平台结合RAG技术构建企业专属智能客服系统,涵盖从客户意图识别到问答记录飞书多维表格的全链路流程。通过配置意图识别、问题优化、知识库检索(支持文本+图片)、AI回复生成等模块,实现智能客服功能。最终可将用户问答自动记录到飞书多维表格,便于企业数据分析。该方案无需复杂编码,中小企业可根据实际需求灵活调整,快速部署智能客服系统。

2025-09-07 09:15:00 1019

原创 收藏学习!大模型预训练深度解析,小白也能懂的LLM核心知识

文章解析大语言模型(LLM)的预训练过程,即通过海量文本让模型掌握语言规律和知识的"读书"阶段。预训练采用自回归/掩码语言建模方法,基于Transformer架构,需要强大算力支持。它使模型具备零样本/小样本学习、跨任务迁移和涌现能力,但也面临算力消耗、数据质量等挑战。预训练是LLM从"通才"成长为"专家"的关键步骤。

2025-09-07 08:30:00 623

原创 收藏必备:大模型文本嵌入技术BGE与Sentence-BERT全面对比与实战教程

本文详细介绍了两种文本嵌入模型BGE和Sentence-BERT,它们均能将文本转化为低维稠密向量用于语义相似度计算、检索等任务。BGE由北京人工智能研究院开发,具有高性能、多语言支持和指令微调优化特点;Sentence-BERT则通过池化操作提升效率,适配BERT生态。文章对比了两者的核心优化、性能、语言支持、使用门槛及适用场景,帮助读者根据语言类型、任务精度需求及计算资源选择合适的模型。

2025-09-06 08:45:00 1589

原创 【必看收藏】AI智能体(Agent)构建指南:从理论到实践的完整教程

文章介绍了AI智能体(Agent)的基础构建知识,包括其定义、适用场景及核心设计要素。Agent具有智能决策和工具调用两大特点,适用于复杂决策制定、规则系统维护及非结构化数据处理场景。构建Agent需考虑模型选择、工具定义和指令配置,可采用单Agent或多Agent系统。同时,文章强调了安全护栏构建和人工干预规划的重要性,以确保Agent系统的安全可靠运行。

2025-09-06 08:00:00 1038

原创 【建议收藏】深入理解Agentic AI:8层架构设计与5个能力等级,程序员必学大模型进阶之路

文章全面解析了Agentic AI的8层架构(从基础设施到运维治理)和5个能力等级(从工具调用到完整系统),强调了构建有效智能体的核心要素包括清晰的边界界定、推理能力、记忆机制及人类控制交接点。提供了各等级技术要求和任务范围,指出成功关键在于从简起步、目标驱动开发,避免前期过度复杂化,最终构建真正可用的智能体解决方案。

2025-09-06 07:45:00 1168

原创 【收藏】小白也能上手:通义千问3.0构建RAG系统完整教程

本文详细介绍了如何利用通义千问3.0系列模型(包括文本生成、嵌入和重排模型)构建RAG系统。通过结合256K超长上下文能力的Qwen3-4B-Instruct-2507、文本嵌入模型Qwen3-Embedding-0.6B和重排模型Qwen3-Reranker-0.6B,文章提供了完整的实现流程和代码示例,展示了如何从文档加载、向量检索到重排序和最终生成的全过程,为开发者提供了实用的RAG构建指南。

2025-09-05 11:30:00 844

原创 RAG技术深度解析:收藏这份开发者实战笔记,轻松掌握检索增强生成

本文介绍了RAG(检索增强生成)技术的核心流程:知识向量化存储、相似检索、重排序(rerank)和LLM生成回答。作者分享了实际项目经验,详细探讨了RAG应用中的主要挑战,包括幻觉问题、上下文长度限制、多跳问题和指定遵从问题,并提出了相应解决思路。文章强调RAG是打造个性化大模型应用的基础,特别适合企业知识问答和特定领域聊天机器人场景。

2025-09-05 08:45:00 921

原创 【必读收藏】大模型Agent框架选择指南:LangGraph、AutoGen、CrewAI,哪个最适合你?

文章介绍了大模型智能体(Agent)的概念和优势,详细解析了三款热门Agent框架:LangGraph(基于LangChain的扩展,提供循环和状态管理能力)、AutoGen(微软出品的多智能体协作平台)和CrewAI(角色扮演型框架)。文章比较了这三款框架的核心范式、控制力、上手难度和最佳应用场景,提供了针对不同需求的选择建议,帮助开发者根据项目特点选择合适的Agent框架。

2025-09-05 08:15:00 805

原创 为什么说AI Agent是下一个风口?程序员必学的智能体开发全攻略

AI Agent是AI应用的革命性转变,它从传统AI工具的"一次输入一次输出"进化为具有主动性的智能体,能理解目标、拆解任务、主动执行并持续学习。作为效率倍增器,Agent正重塑职场分工,让优秀者更优秀。学习路径可从使用GPTs等零门槛工具开始,逐步掌握改造和创建自己的智能体,真正站在AI前沿。

2025-09-04 11:45:58 1075

原创 生产环境中的RAG系统构建:从基础到高级的大模型应用技术

本文是一份关于构建生产就绪RAG系统的全面指南,从基础架构(索引、检索、生成)到高级技术(查询转换、路由策略、高级索引)进行了详细讲解。文章通过代码示例介绍了多种提升检索准确性的方法,如多查询生成、RAG-Fusion、HyDE等,并探讨了专用重新排序和AI自我纠正等高级技术。最后,文章详细介绍了RAG系统的评估方法,包括忠实度、正确性等核心指标,以及使用各种框架进行系统评估的实践。

2025-09-04 11:29:52 792

原创 【干货收藏】RL增强型RAG实战:让大模型回答更精准的强化学习方案

本文介绍了基于强化学习(RL)增强的RAG系统构建方法,通过状态与动作设计、奖励机制、策略网络三个核心模块,实现了检索与生成过程的动态优化。系统支持查询改写、上下文扩展与过滤等操作,通过多轮迭代提升回答准确率。实验表明,RL增强型RAG相比基础RAG性能提升约25%,能更有效地处理复杂查询,生成更准确、相关的回答。

2025-09-04 11:16:40 1031

原创 【技术教程】GraphRAG+Ollama:打造私密高效的AI知识系统,附代码示例,建议收藏!

GraphRAG通过将信息组织成知识图谱,使AI能够理解实体间关系并回答复杂问题,减少错误。Ollama是开源工具,允许在本地运行AI模型,保护隐私并降低成本。两者结合使用,GraphRAG构建知识图谱,Ollama提供AI能力来理解和查询,适合商业智能、研究和隐私敏感场景,比传统RAG提供更全面、结构化的信息处理方式。

2025-09-03 11:38:38 865

原创 【值得收藏】RAG核心技术:一文掌握5种文本分块策略,从入门到精通

RAG系统中,文本分块是将大文档分割为较小块的关键步骤,主要有五种策略:固定大小分块、语义分块、递归分块、基于文档结构的分块和基于LLM的分块。每种方法各有优劣:固定大小分块简单但可能破坏语义;语义分块保持语境但依赖阈值;递归分块保留自然流畅但有计算开销;基于文档结构的分块需文档有清晰结构;基于LLM的分块语义准确但计算要求高。选择策略应考虑内容性质、嵌入模型能力和计算资源等因素,语义分块在多数情况下效果较好。

2025-09-03 11:28:42 783

原创 超越提示词工程:使用RAG构建智能意图识别系统,程序员进阶指南

本文介绍如何超越传统提示词工程,使用检索增强生成(RAG)技术构建更智能的AI智能体,实现精准的意图识别和槽位抽取。文章详解RAG核心架构、工作流程,并提供从零构建RAG意图识别系统的完整实践代码,包括构建高质量意图知识库、实现端到端流程以及处理多轮对话挑战。相比传统方法,RAG方案提供更高准确性、更强扩展性、更好可控性和更低成本的优势。

2025-09-03 11:13:23 847

原创 Agentic AI系统框架图解:从基础到实践,程序员必备知识(建议收藏)

本文详解了Agentic AI系统的四层架构:LLM基础层作为核心引擎;Agent代理层赋予系统自主行动能力;多代理系统层实现Agent间协作与调度;基础设施层确保系统安全可靠运行。这一分层架构使AI从简单对话机器转变为能完成复杂任务的工作系统,是企业级AI应用的基础框架。

2025-09-02 13:37:49 1012

原创 一文搞懂MCP与Function Calling:大模型落地关键技术

核心要点回顾定位差异:Function Calling是“决策层”(决定调用什么),MCP是“标准层”(怎么调用),二者协作而非替代;核心价值:MCP解决“标准化、低成本、高安全”问题,Function Calling解决“模型主动调用”问题;适用场景:简单场景可单用Function Calling,复杂企业场景需MCP+Function Calling协同。实践建议对开发者:优先学习MCP协议,掌握“工具注册-客户端调用”的核心流程,这将成为企业级AI开发的核心技能;

2025-09-02 12:01:39 699

原创 【必看教程】企业级多智能体AI系统构建实战:LangGraph+LangSmith完整实现与部署指南

本文档是基于《多智能体AI系统基础:理论与框架》的实战篇,详细介绍了使用LangGraph和LangSmith构建企业级多智能体AI系统的完整实现。从BDI认知架构设计、智能体通信机制、工作流引擎到监控追踪,提供了全栈解决方案。包含智能客服系统示例、Docker容器化部署和K8s生产环境部署方案,以及性能优化策略,帮助开发者将多智能体理论转化为生产级系统,适合AI工程师和系统架构师参考学习。

2025-09-02 11:54:28 933

原创 【值得收藏】大模型赋能运营商:将智能判断转化为可控工作流

本文提出将大模型与工作流结合,解决运营商故障处理中的高并发与复杂依赖问题。通过将模型判断作为节点,工单、告警等作为受控接口,用工作流串联这些节点,实现智能判断到可控流程的转变。文章提供了基于Agently的工程化工作流示例代码,详细阐述了工作流的优势、落地注意事项和持续改进方法,帮助运营商提升自动化处理率、减少误判、缩短修复时间,将智能转化为实际运营竞争力。

2025-09-01 15:26:43 1007

原创 收藏!阿里发布《AI Agent开发新范式》:LLM+Agent双引擎时代来了,小白到程序员必学指南

文章介绍AI应用进入"大模型思考+Agent行动"双引擎时代,LLM作为"大脑"负责思考,Agent作为"四肢"负责行动。文章详细阐述了Agent的核心构成、两种落地路线、与传统Chatbot的区别,以及基于函数计算FC、AI Studio和AI网关的云原生架构,形成"端-边-云"全链路协同,为企业AI应用落地提供实用指导。

2025-09-01 14:55:16 941

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除