[每日一题]153:球会落何处

该博客主要讨论了一个二维网格问题,其中包含指向左右两侧的挡板。文章介绍了如何模拟球从网格顶部开始滚动,根据挡板方向决定移动,并判断球是否会卡住或掉落到底部。通过提供具体的示例和解题思路,展示了如何实现这一过程,涉及到了模拟算法和边界条件的检查。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题目描述

用一个大小为 m x n 的二维网格 grid 表示一个箱子。你有 n 颗球。箱子的顶部和底部都是开着的。

箱子中的每个单元格都有一个对角线挡板,跨过单元格的两个角,可以将球导向左侧或者右侧。

  • 将球导向右侧的挡板跨过左上角和右下角,在网格中用 1 表示。
  • 将球导向左侧的挡板跨过右上角和左下角,在网格中用 -1 表示。

在箱子每一列的顶端各放一颗球。每颗球都可能卡在箱子里或从底部掉出来。如果球恰好卡在两块挡板之间的 “V” 形图案,或者被一块挡导向到箱子的任意一侧边上,就会卡住。

返回一个大小为 n 的数组 answer ,其中 answer[i] 是球放在顶部的第 i 列后从底部掉出来的那一列对应的下标,如果球卡在盒子里,则返回 -1 。

示例 1:

在这里插入图片描述

输入:grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]]
输出:[1,-1,-1,-1,-1]
解释:示例如图:
b0 球开始放在第 0 列上,最终从箱子底部第 1 列掉出。
b1 球开始放在第 1 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。
b2 球开始放在第 2 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b3 球开始放在第 3 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b4 球开始放在第 4 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。

示例 2:

输入:grid = [[-1]]
输出:[-1]
解释:球被卡在箱子左侧边上。

示例 3:

输入:grid = [[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1]]
输出:[0,1,2,3,4,-1]

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • grid[i][j] 为 1 或 -1

题解思路

方法:模拟

我们依次判断每个球的最终位置。对于每个球,从上至下判断球位置的移动方向。在对应的位置,如果挡板向右偏,则球会往右移动;如果挡板往左偏,则球会往左移动。若移动过程中碰到侧边或者 V 型,则球会停止移动,卡在箱子里。如果可以完成本层的移动,则继续判断下一层的移动方向,直到落出箱子或者卡住。

代码如下:

class Solution {
public:
    vector<int> findBall(vector<vector<int>>& grid) {
        int n = grid[0].size();
        vector<int> ans(n);
        for (int i = 0; i < n; ++i) {
            int col = i;    // 球的初始列
            for (auto &row : grid) {
                int dir = row[col];
                col += dir;
                if (col < 0 || col == n || row[col] != dir) {   // 到达侧边或 V 形
                    col = -1;
                    break;
                }
            }
            ans[i] = col;   // col >= 0 为成功到达底部
        }
        return ans;
    }
};

复杂度分析

时间复杂度: O ( m × n ) O(m×n) O(m×n),其中 m 和 n 是网格的行数和列数。外循环消耗 O ( n ) O(n) O(n),内循环消耗 O ( m ) O(m) O(m)

空间复杂度: O ( 1 ) O(1) O(1)。返回值不计入空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值