在讲解AIGC和AI绘画之前,我们先看看什么是AI以及AI的历史。
AI历史发展轨迹
什么是人工智能
人工智能(Artificial intelligence,简称AI)亦称机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指用普通计算机程序来呈现人类智能的技术。是计算机科学的一个重要分支,是一门寻求模拟、扩展和增强人的智能的科学和技术领域,涉及计算机科学、心理学、哲学、神经科学、语言学等多个学科。人工智能的主要目标是使计算机或其他设备能够执行一些通常需要人类智慧才能完成的任务,如学习、理解、推理、解决问题、识别模式.处理自然语言、感知和判断等。
人工智能的发展可以分为两大类–弱人工智能(Weak AI)和强人工智能(Strong AI)。弱人工智能是指专门设计用来解决特定问题的智能系统,如语音识别、图像识别和推荐系统等。这些系统在某些特定任务上表现出高度的智能,但它们并不具备广泛的认知能力或自主意识。
强人工智能则是指具有广泛认知能力和类人意识的智能系统,这种系统理论上可以像人类一样处理各种问题,独立地学习和成长。然而,尽管人工智能领域已经取得了显著的进展,但目前尚未实现强人工智能。
发展历史
总体来说,人工智能的发展可以分为四个阶段。
1 早期研究(20世纪50年代-60年代)
第一个阶段,科学家们集中精力研究基本的人工智能概念和理论。代表性成果包括图灵测试、第一个人工智能程序(逻辑理论家)以及人工神经网络的基础研究。
2 知识表示与专家系统(20世纪70年代-80年代)
第二个阶段,研究重心转向利用知识表示、推理和规划技术,解决更复杂的问题。其间涌现出大量基于知识的专家系统,如早期的医疗诊断系统MYCIN。
3 机器学习与统计方法(20世纪90年代-21世纪初)
第三个阶段,人工智能领域开始广泛应用机器学习技术,尤其是统计学习方法。代表性技术包括支持向量机(SVM)、随机森林以及早期的深度学习方法。
4 大数据与深度学习(21世纪10年代一至今)
随着大数据的兴起和计算能力的提高,深度学习技术取得了突破性进展。诸如卷积神经网络(CNN)、循环神经网络(RNN)以及强化学习等领域取得了重要成果。这一阶段的人工智能已在众多应用场景中取得了显著的成绩,如图像识别、自然语言处理和自动驾驶等。
AIGC是什么
"Artificial Intelligence Generated Content"的首字母缩写,即采用人工智能技术来自动生产内容,目前AIGC已经可以生成文章、代码、对话、图片、视频、音乐、表格等多种多样的内容,而且还在快速发展。
从技术能力方面来看,AIGC根据面向对象、实现功能的不同可分为三个层次。
一、智能数字内容孪生:
简单的说,将数字内容从一个维度映射到另一个维度。
因为另一个维度内容不存在所以需要生成。内容孪生主要分为内容的增强与转译。增强即对数字内容修复、去噪、细节增强等。转译即对数字内容转换如翻译等。
【应用】:图像超分、语音转字幕、文字转语音等。
二、智能数字内容编辑:
智能数字内容编辑通过对内容的理解以及属性控制,进而实现对内容的修改。比如不同场景视频片段的剪辑。通过人体部位检测以及目标衣服的变形控制与截断处理,将目标衣服覆盖至人体部位,实现虚拟试衣。在语音信号处理领域,通过对音频信号分析,实现人声与背景声分离。以上就是在理解数字内容的基础上对内容的编辑与控制。
【应用】:视频场景剪辑、虚拟试衣、人声分离等。
三、智能数字内容生成:
智能数字内容生成通过从海量数据中学习抽象概念,并通过概念的组合生成全新的内容。如AI绘画,文本创作、音乐创作和诗词创作。再比如,在跨模态领域,通过输入文本输出特定风格与属性的图像,不仅能够描述图像中主体的数量、形状、颜色等属性信息,而且能够描述主体的行为、动作以及主体之间的关系。
【应用】:图像生成(AI绘画)、文本生成(AI写作、ChatBot)、视频生成、多模态生成等。
以上三个层面的能力共同构成 AIGC的能力闭环。
从生成内容层面AIGC可分为五个方面:
1、文本生成
【代表性产品或模型】:JasperAI、copy.AI、ChatGPT、Bard、AI dungeon等。
2、图像生成
【代表性产品或模型】:EditGAN,Deepfake,DALL-E、MidJourney、Stable Diffusion,文心一格等。
3、音频生成
【代表性产品或模型】:DeepMusic、WaveNet、Deep Voice、MusicAutoBot等。
4、视频生成
【代表性产品或模型】:Deepfake,videoGPT,Gliacloud、Make-A-Video、Imagen video等。
5、多模态生成
【代表性产品或模型】:DALL-E、MidJourney、Stable Diffusion等。
AIGC相关技术
最近几年,生成算法、预训练模型、多模态等A技术累积融合,催生了AIGC 的大爆发。
主要三方面:
一、基础的生成算法模型不断突破创新
基础的生成算法模型
模型 | 提出时间 | 模型描述 |
---|---|---|
变分自动编码(Variational Autoencoders,VAE) | 2014年 | 基于变分下界约束得到的Encoder-Decoder模型对 |
生成对抗网络(GAN) |