随机过程极简笔记(一):怎么求功率谱?

本文介绍了如何利用维纳辛钦定理和Welch方法进行功率谱估计的编程实验,结合经典参考文献,深入探讨了在随机过程分析中的功率谱估计技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://zhuanlan.zhihu.com/p/265115075

维纳辛钦定理编程实验

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal

t=np.linspace(0,6.28,256)
x=np.sin(t)+np.sin(20*t)
y = np.correlate(x, x, 'full')

plt.figure()
plt.plot(t,x)
plt.title('signal')
plt.xlabel('Frequency')
plt.ylabel('Magnitude')


plt.figure()
plt.plot(y)
plt.title('autocorrelate')
plt.xlabel('Frequency')
plt.ylabel('Magnitude')


########################################################

fy=np.fft.rfft(y)
freq = np.fft.fftfreq(len(fy))

plt.figure()
plt.plot(freq,abs(fy))
plt.title('FFT of autocorrelate')
plt.xlabel('Frequency')
plt.ylabel('Power')

################################
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞行codes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值