泛函分析极简笔记(2)——Mahalanobis distance

Mahalanobis距离是一种衡量点与分布之间距离的方法,由P. C. Mahalanobis在1936年提出。它考虑了数据集的协方差和相关性,当协方差矩阵为单位矩阵时退化为欧氏距离,对角矩阵时对应标准欧氏距离。该距离常用于高维图像的异常检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mahalanobis distance

搬运定义

The Mahalanobis distance is a measure of the distance between a point P and a distribution D, introduced by P. C. Mahalanobis in 1936. It is a multi-dimensional generalization of the idea of measuring how many standard deviations away P is from the mean of D. This distance is zero for P at the mean of D and grows as P moves away from the mean along each principal component axis. If each of these axes is re-scaled to have unit variance, then the Mahalanobis distance corresponds to standard Euclidean distance in the transformed space. The Mahalanobis distance is thus unitless, scale-invariant, and takes into account the correlations of the data set.

 回顾协方差Covariance矩阵定义,也称auto-covariance

 Cross-covariance matrix

 Autocorrelation

 一图看区别

 如果协方差矩阵是单位矩阵,那么Mahalanobis距离退化为欧氏距离。如果协方差矩阵为对角矩阵,那么Mahalanobis距离又为标准欧氏距离:

Mahalanobis距离常用于遥感高维图像outlier检测。

常用范数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞行codes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值