Mahalanobis distance
搬运定义
The Mahalanobis distance is a measure of the distance between a point P and a distribution D, introduced by P. C. Mahalanobis in 1936. It is a multi-dimensional generalization of the idea of measuring how many standard deviations away P is from the mean of D. This distance is zero for P at the mean of D and grows as P moves away from the mean along each principal component axis. If each of these axes is re-scaled to have unit variance, then the Mahalanobis distance corresponds to standard Euclidean distance in the transformed space. The Mahalanobis distance is thus unitless, scale-invariant, and takes into account the correlations of the data set.
回顾协方差Covariance矩阵定义,也称auto-covariance
Cross-covariance matrix
Autocorrelation
一图看区别
如果协方差矩阵是单位矩阵,那么Mahalanobis距离退化为欧氏距离。如果协方差矩阵为对角矩阵,那么Mahalanobis距离又为标准欧氏距离:
Mahalanobis距离常用于遥感高维图像outlier检测。
常用范数