现代机械设计极简笔记(5):止推轴承轴端磨擦

本文探讨轴端在止推轴承上的摩擦力分布,重点分析跑合轴承的外圈压强变化及对轴设计的影响。通过积分和平衡原理,解释了压强在极限情况下的变化,并揭示了空心轴设计的实用原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

轴端:轴用于承受轴向力的部分。当轴端1在止推轴承2上旋转时,接触面为一个圆环面,会受到磨擦力。

环形微面积

ds = \rho 2\pi d\rho

正压力

dF_N = p\cdot ds

摩擦力

dF_f = f \cdot dF_N

摩擦力矩

dM_f = \rho \cdot dF_f

轴端所受的总摩擦力矩

M_f = \int_{r}^{R} p f 2 \pi \rho^2 d\rho

若压强均匀分部,那么

p = \frac{G}{\pi \left (R^2 - r^2 \right )}

M_f = \frac{2f G \left ( R^2 - r^2 \right )}{3\left ( R^2-r^2 \right )}

对于跑合轴承,由于外圈压力大,磨损快,极限情况会只剩下圈心没有磨损,那么这时圆心的压强为无穷大。这也是为什么实际设计时将轴设计成空心的原因。

跑和轴承的压强

p \rho = cons

那么积分得

M_f = f 2 \pi (p \rho) \int_{r}^{R} \rho d\rho = \pi f (p \rho) \left ( R^2 - r^2 \right )

又因为重力和正压力平衡

G = \int_{r}^{R}p ds = \pi f \left ( p \rho \right ) \left ( R-r \right )

所以

M_f = fG\frac{\left ( R+r \right )}{2}=fGR_0

R0为平均半径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞行codes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值