单纯形是多面体

 一组向量(v0,...,vk),每个向量也代表一个点,那么这组点的凸包(conv)是单纯形,前提是v1-v0,...,vk-v0是线性无关的。

一维单纯形就是线段;二维单纯形就是三角形;三维单纯形就是四面体。

人们希望能够把一个拓扑对象剖分成许多个小的单纯形,要求任何两个相邻的单纯形相交的公共部分仍是一个单纯形--这种剖分称为(曲)单纯剖分。在曲面情形,就是熟知的三角剖分。

多面体的代数定义

 若单纯形表示成线性无关的向量形式:

\left \{ v_0 + v_1y_1+...+v_ky_k - v_0(y_1+..+y_k) \right \}

秩为k的矩阵可以初等变换分块为大小为k的单位矩阵和0矩阵。

 

 实际上,一个多边形可以表示为一个彷射包+凸包:

\left \{ \theta_1v_1+...+\theta_kv_k| \theta_1+...+\theta_m=1,\theta_i >0 \right \}

m \leq k

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞行codes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值