Problem
Solution
不难设出一个不怎么样的状态f[i][j]表示前i个分j段的最小代价
f [ i ] [ j ] = min ( f [ k ] [ j − 1 ] + ( S ∗ j + s t [ i ] ) ∗ ( s f [ i ] − s f [ k ] ) ) f[i][j]=\min(f[k][j-1]+(S*j+st[i])*(sf[i]-sf[k])) f[i][j]=min(f[k][j−1]+(S∗j+st[i])∗(sf[i]−sf[k]))
考虑未来费用优化,多分一段相当于后面所有段都加上S×费用
f [ i ] = min ( f [ j ] + s t [ i ] ∗ ( s f [ i ] − s f [ j ] ) + S ∗ ( s f [ n ] − s f [ j ] ) ) f[i]=\min(f[j]+st[i]*(sf[i]-sf[j])+S*(sf[n]-sf[j])) f[i]=min(f[j]+st[i]∗(sf[i]−sf[j])+S∗(sf[n]−sf[j]))
f [ i ] = s t [ i ] + s f [ i ] + S ∗ s f [ n ] + min ( f [ j ] − s t [ i ] ∗ s f [ j ] − S ∗ s f [ j ] ) ) f[i]=st[i]+sf[i]+S*sf[n]+\min(f[j]-st[i]*sf[j]-S*sf[j])) f[i]=st[i]+sf[i]+S∗sf[n]+min(f[j]−st[i]∗sf[j]−S∗sf[j]))
时间复杂度 O ( n 2 ) O(n^2) O(n2)
发现不知道怎么单调队列,所以试试考虑斜率优化,若i从j转移比从k转移要优,则有:
f
[
j
]
−
f
[
k
]
+
s
t
[
i
]
∗
(
s
f
[
k
]
−
s
f
[
j
]
)
+
S
∗
(
s
f
[
k
]
−
s
f
[
j
]
)
<
0
f[j]-f[k]+st[i]*(sf[k]-sf[j])+S*(sf[k]-sf[j])<0
f[j]−f[k]+st[i]∗(sf[k]−sf[j])+S∗(sf[k]−sf[j])<0
f [ j ] − f [ k ] < ( s t [ i ] + S ) ( s f [ j ] − s f [ k ] ) f[j]-f[k]<(st[i]+S)(sf[j]-sf[k]) f[j]−f[k]<(st[i]+S)(sf[j]−sf[k])
f [ j ] − f [ k ] s f [ j ] − s f [ k ] < s t [ i ] + S \frac {f[j]-f[k]} {sf[j]-sf[k]}<st[i]+S sf[j]−sf[k]f[j]−f[k]<st[i]+S
维护一个下凸包。又由于st[i]+s不一定单调,所以不能用单调队列,而是在维护好的凸包上二分。
注意特判sf[j]和sf[k]相等的时候,f小的更优秀。不过好像写的代码不同也有所不同,不然两种都试一下吧。
时间复杂度 O ( n log n ) O(n\log n) O(nlogn)
Code
#include <cstdio>
#define rg register
using namespace std;
typedef long long ll;
const int maxn=1000010;
const double INF=1e20;
template <typename Tp> inline int getmin(Tp &x,Tp y){return y<x?x=y,1:0;}
template <typename Tp> inline int getmax(Tp &x,Tp y){return y>x?x=y,1:0;}
template <typename Tp> inline void read(Tp &x)
{
x=0;int f=0;char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') f=1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
if(f) x=-x;
}
int n,s,tp,st[maxn],sf[maxn],stk[maxn];
ll f[maxn];
double slope(int j,int k)
{
if(sf[j]==sf[k]) return f[j]<f[k]?INF:-INF;
return 1.0*(f[j]-f[k])/(sf[j]-sf[k]);
}
int find(int k)
{
int l=1,r=tp,m,res=1;
while(l<=r)
{
m=(l+r)>>1;
if(slope(stk[m-1],stk[m])<=k) res=m,l=m+1;
else r=m-1;
}
return stk[res];
}
int main()
{
read(n);read(s);
for(rg int i=1;i<=n;i++)
{
read(st[i]);st[i]+=st[i-1];
read(sf[i]);sf[i]+=sf[i-1];
}
stk[++tp]=0;
for(rg int i=1;i<=n;i++)
{
int k=find(st[i]+s);
f[i]=f[k]+(ll)st[i]*(sf[i]-sf[k])+(ll)s*(sf[n]-sf[k]);
while(tp>1&&slope(stk[tp-1],stk[tp])>=slope(stk[tp],i)) tp--;
stk[++tp]=i;
}
printf("%lld\n",f[n]);
return 0;
}