1 推广效果分析 画图
有三个连续型的变量 ,要看他们之间的关系, 应该可以想到使用气泡图(特殊的散点图)
-
x, y 散点半径大大小
Matplotlib 绘图可以满足我们所有的绘图需求
-
可以绘制文字, 绘制辅助线...
关于绘图的部分, 记住API是没必要的, 主要要掌握的是什么场景使用什么图形
-
直方,散点(气泡), 柱状,折线,饼,热力图(相关性),箱线图(提琴图)
2 RFM 用户价值分群模型
精细化运营、精准营销
-
服务好老用户, 避免用户的流失, 能够从竞品的用户中挖过来新的用户
-
精细化运营, 精准营销很重要的一个环节就是给用户分群
-
给用户分成不同的群体, 认为相同的群体用户有一些共性, 针对共性来指定运营的策略
-
AIPL AAAA AAAAA AARRR
-
RFM
-
数仓、数分的同学在精细化运营、精准营销起到的作用
-
提供数据的支持, 给用户贴上不同的标签, 这些标签是精细化运营、精准营销的抓手
-
标签是通过一系列的规则计算出来的
-
-
给精细化运营、精准营销这些动作设计一系列考核指标, 用来评估运营的效果
2.1 RFM介绍
R recency 最近 分成两类 7天以内来过 高 低
F frequency 次数 90天以内 >15次 高 低
M monetory 金额 90天以内消费 >1500 高 低
计算RFM需要什么样的数据
-
带着会员ID的购物流水就可以计算RFM
-
id 时间 金额
-
RFM适合落地的业务
-
必须有消费,频率不能太低, 最适合的业务就是电商,外卖,旅游,打车
RFM如何使用
-
最简单的用法就是三个维度做二分 高低 高低 高低 给用户分成8群
-
还可以考虑做三分 低中高 1,2,3 给用户分成27群
-
也可以考虑分5份 1,2,3,4,5 每个维度来计算均值, 高于均值的 高, 低于均值的是低 还是划分成8群
2.2 RFM计算思路
ID, 时间,金额
① 用户ID做分组聚合, 计算出R, F , M的聚合值
-
R 用户ID分组, 取时间的max() 用今天的时间 - 时间的最大值 得到R : 最后一次访问 距今7天
-
F 用户ID分组, 计数 统计有多少笔订单 (有些业务需要先筛选一下数据,比如最近90天, 最近180天) 90天以内来了10次
-
M 用户ID分组 对金额求和 一共花了1000元
② 制定打分的标准, 依据这个标准给 R, F , M的聚合值转换成 1,2,3
pd.cut()
③ 把三个维度的分数拼接到一起 , 用户贴上对应的标签
④ 结果的保