Pandas——数据分析业务

1 推广效果分析 画图

有三个连续型的变量 ,要看他们之间的关系, 应该可以想到使用气泡图(特殊的散点图)

  • x, y 散点半径大大小

Matplotlib 绘图可以满足我们所有的绘图需求

  • 可以绘制文字, 绘制辅助线...

关于绘图的部分, 记住API是没必要的, 主要要掌握的是什么场景使用什么图形

  • 直方,散点(气泡), 柱状,折线,饼,热力图(相关性),箱线图(提琴图)

2 RFM 用户价值分群模型

精细化运营、精准营销

  • 服务好老用户, 避免用户的流失, 能够从竞品的用户中挖过来新的用户

  • 精细化运营, 精准营销很重要的一个环节就是给用户分群

    • 给用户分成不同的群体, 认为相同的群体用户有一些共性, 针对共性来指定运营的策略

    • AIPL AAAA AAAAA AARRR

    • RFM

数仓、数分的同学在精细化运营、精准营销起到的作用

  • 提供数据的支持, 给用户贴上不同的标签, 这些标签是精细化运营、精准营销的抓手

    • 标签是通过一系列的规则计算出来的

  • 给精细化运营、精准营销这些动作设计一系列考核指标, 用来评估运营的效果

2.1 RFM介绍

R recency 最近 分成两类 7天以内来过 高 低

F frequency 次数 90天以内 >15次 高 低

M monetory 金额 90天以内消费 >1500 高 低

计算RFM需要什么样的数据

  • 带着会员ID的购物流水就可以计算RFM

    • id 时间 金额

RFM适合落地的业务

  • 必须有消费,频率不能太低, 最适合的业务就是电商,外卖,旅游,打车

RFM如何使用

  • 最简单的用法就是三个维度做二分 高低 高低 高低 给用户分成8群

  • 还可以考虑做三分 低中高 1,2,3 给用户分成27群

  • 也可以考虑分5份 1,2,3,4,5 每个维度来计算均值, 高于均值的 高, 低于均值的是低 还是划分成8群

2.2 RFM计算思路

ID, 时间,金额

① 用户ID做分组聚合, 计算出R, F , M的聚合值

  • R 用户ID分组, 取时间的max() 用今天的时间 - 时间的最大值 得到R : 最后一次访问 距今7天

  • F 用户ID分组, 计数 统计有多少笔订单 (有些业务需要先筛选一下数据,比如最近90天, 最近180天) 90天以内来了10次

  • M 用户ID分组 对金额求和 一共花了1000元

② 制定打分的标准, 依据这个标准给 R, F , M的聚合值转换成 1,2,3

pd.cut()

③ 把三个维度的分数拼接到一起 , 用户贴上对应的标签

④ 结果的保

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值