第一章:
- 基和维数
- 坐标
- 基变换与坐标变换
- 子空间
- 核和值域
- 子空间的交与和
- 直和子空间
- 直和补子空间
- 1.2 内积空间
- 正交补子空间
- 1.3 线性变换
- 正交变换与酉变换
第二章:Jordan标准型
- Jordan 矩阵
代数重数k:特征值的重数(如:入1 = 入2 = 2,二重)
几何重数t:线性无关的特征向量个数 (虽然是二重根,特征向量也可能为1)
t = k(向量个数 = 重数):分开写,右上不用写1
t < k(向量个数 < 重数):不要分开写,右上要写1
例1:
例2:
- 最小多项式:
- 矩阵可对角化:
1.有n个 线性无关 的 特征向量
2.特征值的重数 等于 其对应的特征向量的个数
3.最小多项式没有重根
第三章:矩阵分解
满秩分解
法一:
例题1:
法2:
例题2
wozhe
-
可对角化矩阵的谱分解
-
正规矩阵的酉相似分解
-
Hermit矩阵
-
正规矩阵
-
正定矩阵
第四章:矩阵的广义逆
-
广义逆中的减号逆
-
减号逆的应用,求Ax = b
-
加号广义逆
-
满秩分解求广义逆A﹢
- 奇异值分解求广义逆A+
- 求相容方程组的极小范数解
第五章:矩阵范数
- 向量范数
-
矩阵范数
证明题.
例1
F范数 也等于 每一个元素的平方和再开根 -
矩阵序列的收敛
证明题
-
矩阵幂级数 收敛的判定与求和
收敛判定
求和