深度学习关于NLLLoss损失的数学向个人详解

一、起因与目的

        写这篇文章的起因,就是网络上查了很多NLLLoss(Negative Log-Likelihood Loss,负对数似然损失)相关的详解,但是要么没有讲透,要么就是只讲了如何应用。而我看了之后关于其底层是如何计算损失,并使预测值y趋近于target的原理还是不太清楚。自己从二维数学图像的角度小推了一遍,通俗一点,现在记录一下,以供查阅。

参考:Pytorch损失函数torch.nn.NLLLoss()详解 - 百度文库 (baidu.com)https://wenku.baidu.com/view/530c4ccdbbf67c1cfad6195f312b3169a551ea5c.html?_wkts_=1681370161513&bdQuery=NLLLoss%E8%AE%A1%E7%AE%97%E8%AF%A6%E8%A7%A3

二、计算过程概览

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值